Crowston, Kevin, et al. “Knowledge Tracing to Model Learning in Online Citizen Science Projects”. IEEE Transactions on Learning Technologies, vol. 13, 2020, pp. 123-34, doi:10.1109/TLT.2019.2936480 .
- Jackson, Corey, et al. “Teaching Citizen Scientists to Categorize Glitches Using Machine-Learning-Guided Training”. Computers in Human Behavior, vol. 105, 2020, p. 106198, doi:10.1016/j.chb.2019.106198.
- Harandi, Mahboobeh, et al. “The Genie in the Bottle: Different Stakeholders, Different Interpretations of Machine Learning”. Hawai’i International Conference on System Science, 2020, doi:10.24251/HICSS.2020.719 .
- Jackson, Corey Brian, et al. “Shifting Forms of Engagement: Volunteer Learning in Online Citizen Science”. Proceedings of the ACM on Human-Computer Interaction, no. CSCW, 2020, p. 36, doi:10.1145/3392841.
- Østerlund, Carsten, et al. Folksonomies in Crowdsourcing Platforms: Three Tensions Associated With the Development of Shared Language in Distributed Groups. 2020.
- Jackson, Corey Brian. Motivating Participation through Novelty Cues. 2020.
- Crowston, Kevin, et al. “Coordinating Advanced Crowd Work: Extending Citizen Science”. Citizen Science: Theory and Practice, vol. 4, 2019, pp. 1–12, doi:10.5334/cstp.166.
- Jackson, Corey Brian, et al. “Linguistic Adoption in Online Citizen Science: A Structurational Perspective”. International Conference on Information Systems, 2019, https://aisel.aisnet.org /icis2019/crowds_social/crowds_social/28/.
- Coughlin, Scott, et al. “Classifying the Unknown: Discovering Novel Gravitational-Wave Detector Glitches Using Similarity Learning”. Physical Review D, vol. 99, no. 8, 2019, p. 082002, doi:10.1103/PhysRevD.99.082002.
- Crowston, Kevin, and Isabelle Fagnot. “Stages of Motivation for Contributing User-Generated Content: A Theory and Empirical Test”. International Journal of Human-Computer Studies, vol. 109, Syracuse University, 2018, doi:10.1016/j.ijhcs.2017.08.005 .