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Abstract

Existing literature points to scaffolded training as an effective yet resource-intensive

approach to help newcomers learn and stay motivated. Experts need to select relevant

learning materials and continuously assess learners’ progress. Peer production com-

munities such as Wikipedia and Open Source Software Development projects face the

additional problem of turning volunteers into productive participants as soon as possi-

ble. To address these challenges, we designed and tested a training regime combining

scaffolded instruction and machine learning to select learning materials and gradually

introduces new materials to individuals as their competences improve. We evaluated

the training regime on 386 participants that contribute to Gravity Spy, an online citi-

zen science project where people are asked to categorize glitches to assist scientists in

the search for gravitational waves. Volunteers were assigned to one of two conditions;

(1) a machine learning guided training (MLGT) system that continuously assesses vol-

unteers skill level and adjusts the learning materials or (2) an unscaffolded training

program where all learning materials were administered at once. Our analysis revealed
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that volunteers in the MLGT condition were more accurate on the categorization task

(an average accuracy of 90% vs. 54%), executed more tasks (an average of 228 vs. 121

tasks), and were retained for a longer period (an average of 2.5 vs. 2 sessions) than

volunteers in the unscaffolded training. The results suggest that MLGT is an effec-

tive pedagogical approach for training volunteers in categorization tasks and increases

volunteers’ motivation.

Keywords: citizen science, experiment, training, online communities, Zooniverse,

user studies, scaffolding, learning

1. Introduction

Peer production platforms like Wikipedia, open-source software (OSS), and citi-

zen science projects rely on a steady stream of newcomers. In Wikipedia, new editors

compose and edit articles and new software developers write and debug software code

in OSS. Citizen scientists contribute to research by collecting, analyzing, or interpret-5

ing data Bonney et al. (2009). Peer production platforms need to facilitate learning

among newcomers while maintaining them as motivated and productive participants

to be successful (Kraut et al., 2012). This is not an easy task as learning, motivation,

and productivity easily goes counter to one another. Some peer production platforms

provide explicit training to help volunteers learn about the community, its technical10

infrastructure, the tasks to be completed, and how best to contribute (Malinen, 2015;

Ducheneaut, 2005). But, if the training takes a lot of effort, it might demotivate some

volunteers and take away from the time they could serve as productive members. In

contrast, a short training regime could lead to under-qualified participants that find the

task too hard and lose interest. The training and the tasks should exist in the zone15

of proximal development (Vygotsky, 1980) where volunteers can execute tasks with

minimal assistance while remaining productive members of the community (Brown &

Duguid, 1991; Lave & Wenger, 1991; Lave, 1991; Downes, 2006).

The online learning and e-learning literature point to scaffolded instruction as an

effective approach to instruct newcomers (Rienties et al., 2012; Molenaar et al., 2012;20

Tuckman, 2007; Haythornthwaite, 2014; Jones & de Laat, 2016; Østerlund & Carlile,
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2005; Luckin, 2008; Haythornthwaite & Andrews, 2011; Downes, 2006). Dickson

et al. (1993) describes scaffolded instruction as “the systematic sequencing of prompted

content, materials, tasks, and teacher and peer support to optimize learning.” Scaffold-

ing allows instructors to accommodate individual student needs by providing among25

others tailored assistance, feedback, and actively diagnosing student needs and com-

prehension (Hogan & Pressley, 1997).

The added benefit of scaffolding training comes at a cost often difficult for peer

production communities to afford. First, developing and making the training regime

can be resource-intensive. It often requires experts to select and organize training ma-30

terials and continuously evaluate learners as they move through the scaffolded process

and require gradually more challenging materials (Ford & Geiger, 2012). On many

projects, one finds a short supply of experts. For instance, citizen science projects of-

ten struggle to maintain the continuous attention of science teams. Second, training

takes away from the time left for productive activities. To avoid these costs, organi-35

zations sometimes apply on the job training, by having newcomers work and receive

feedback simultaneously (Van Maanen & Schein, 1979). This requires a division of

labor affording tasks at a range of difficulties. Thirds, too difficult or easy tasks demo-

tivate volunteers. Newcomers to peer production communities come with a range of

abilities, and they learn as they go. Trying to fit the task to the individual member’s40

skill level requires a flexible division of labor and the attention of experts.

To address these challenges, we propose an innovative computer-supported ap-

proach labeled machine-learning-guided training (henceforth referred to as MLGT)

intended to scaffold the learning of categories needed to execute a task and assess

learning of categories computationally. In this approach, a machine-learning classifier45

selects genuine tasks (i.e., tasks currently being worked on in the system) to provide

newcomers so that newcomers are introduced to new categories of data gradually rather

than all at once. Whether or not a machine-learning-guided training regime using gen-

uine tasks can be effective is an open question. It could be that the selected categories

are not appropriate for training, meaning that the ML-chosen categories are no better50

than random tasks for helping volunteers learn. It may also be the case that the tasks

are not of the appropriate level of difficulty, leading to poor retention of volunteers. In
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this paper, we ask: What effect does a machine-learning-guided training regime have

on retention and contribution? To answer this question, we evaluated the MLGT in

an online field experiment against unscaffolded training. We do so in the context of55

a citizen science project where volunteers help analyze data in the search for gravita-

tional waves. Our results reveal that compared to the unscaffolded training, volunteers

in the MLGT condition were more accurate, executed more classification tasks, and

were retained for a longer period.

1.1. Citizen Science60

Citizen science includes scientific research projects that rely on contributions from

members of the general public (i.e., citizens in the broadest sense of the term). There

are several kinds of citizen-science projects: some have volunteers collect data, while

others, including the one we examine in this paper, have volunteers analyze preexisting

data-sets Bonney et al. (2009). The interactions between volunteers and the project65

organizers are mediated over the Internet, i.e., on a digital platform that accepts con-

tributed data or that presents data to be analyzed and collects volunteers’ classifications

(e.g., Zooniverse), making citizen science a form of peer production.

Volunteers typically execute small micro-tasks, that is, granular units of work easily

handled by amateurs in a short time period. For example, in Galaxy Zoo, a citizen70

science project dedicated to helping astrophysicists analyze galaxies, questions about

the shape and emergent properties of galaxies are posed. The results contribute to

scientific research projects. Other classification tasks include transcribing ship logs

(i.e., OldWeather), counting and labeling and describing the behaviors of chimpanzees

(i.e., Chimp & See), and recording the presence of exotic nanoparticles (i.e., Higgs75

Hunters).

Developing effective citizen science training materials face the same core chal-

lenges as many other online production communities, i.e., help volunteers (1) learn, (2)

stay motivated, and (3) productive (Mugar et al., 2014). Yet, one needs to see these is-

sues in the context of the particular demographic and motivational forces characterizing80

citizen science.

First, a small number of studies mographics represented across citizen science does
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not resemble the overall population or online user demographics (Pandya, 2012; Mas-

ters et al., 2016). The volunteer population tend to bee predominately male (Raddick

et al., 2010; Estrada et al., 2013), well educated (46 percent of Foldit players indicated85

having an undergraduate degree (Curtis, 2015) and Raddick et al. (2013) found that

Galaxy Zoo participants were more educated than the general online population), and

come from English speaking Western nations (Raddick et al., 2013).

Second, one finds a variety of motivations present among citizen science volunteers

including a desire to contribute to science Raddick et al. (2013); Lee et al. (2018), inter-90

acting with the site (Reed et al., 2012), social engagement (Reed et al., 2012), curiosity

(Curtis, 2015), and intellectual challenge (Curtis, 2015). Examining motivation at the

project level, one finds a variety of motivational drivers. (Raddick et al., 2013), who

surveyed 10,000 volunteers in Galaxy Zoo, identified twelve categories, including the

desire to learn, discover, social interaction, help, contribute and use the project as a95

resource for teaching, the beauty of the images, fun, largeness of the universe, interest

in the project theme, astronomy, and scientific focus. One expects the find a similar

breadth of motivational drivers in other projects.

1.2. Gravity Spy Project

We carried out our experiment in Gravity Spy (Zevin et al., 2017; Bahaadini et al.,100

2018, 2017), an online citizen science project hosted on the Zooniverse platform (Simp-

son et al., 2014). Gravity Spy leverages human classification and machine learning

to aid the Laser Interferometer Gravitational-wave Observatory (LIGO) collaboration

in its search for gravitational waves. Gravitational waves are extremely faint distor-

tions in the fabric of space created by astronomical events such as merging black holes105

or neutron stars. Astrophysicists use Interferometry to detect gravitational waves by

bouncing lasers off mirrors to look for small changes in the distance the light traveled.

However, the technique is highly sensitive to non-gravitational wave disturbances, e.g.,

from terrestrial interference or internal faults or interactions in and around the detector.

Glitches are produced in a wide variety of time-frequency-amplitude morphologies and110

occur hundreds or thousands of times a day (depending on the threshold used). They

are problematic because they can obscure or even masquerade true gravitational-wave
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signals, reducing the efficacy of the search.

The Gravity Spy project couples human volunteers with machine learning to de-

velop a catalog of glitches having similar morphological characteristics that allow re-115

searchers to focus their search for glitch sources in their effort to improve the detector

and future data analysis. Data from the interferometer are presented to volunteers in

a visual representation of the strength of the signal at different frequencies over time,

called a spectrogram. Present in some spectrograms are transient, non-Gaussian noise

features known as glitches. Figure 1 shows spectrograms of two glitches: on the top120

a blip and on the bottom a whistle. The four images for each glitch cover different

durations, to show the glitch in detail (on the left) or in context (on the right). While

computer vision algorithms perform well at the categorization task for known classes

of glitch, there are many that do not fit these classes, so human classifiers are still

needed to examine the spectrograms.125

Figure 1: An example of various morphologies of a blip glitch (top) and a whistle (bottom).

Human volunteers contribute to Gravity Spy by classifying the spectrograms into

one of the families of known glitches or “None of the Above”. There is also a possibil-

ity of new families of glitches being discovered as the detector is altered and improved.
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Shown in Figure 2 is the classification interface. On the left of the interface, a spectro-

gram is presented, with time on the x-axis and frequency on the y-axis. The intensity130

of the glitch is represented by the color appearing in the spectrogram from blue to yel-

low. On the right are the glitch classes from which a volunteer can select to classify the

glitch. Each spectrogram is analyzed by multiple volunteers, and a consensus glitch

class is supplied to them during the data transfer to improve the quality of the data.

Classifying spectrograms is a perceptual categorization task and, more specifically,135

what Ashby & Maddox (2005) calls an information-integration category learning task,

where two or more dimensions of a stimulus are considered prior to making a decision.

In Gravity Spy, for example, volunteers might examine the duration of a glitch, its

frequency, and its morphological features in order to arrive at a decision. However,

instructors often struggle to verbally describe perceptual dimensions making it difficult140

to develop training materials needed to teach information integration tasks.

For glitch classifying in Gravity Spy, the information integration task structure

poses additional constraints on the effectiveness of traditional training regimes. First,

feedback on the task is crucial to improve learning. Without feedback, learners will be

left without reasoning as to why a particular spectrogram was assigned to a category.145

Second, category bounds are of concern. That is, the delineation of some categories

may be opaque for some types of glitches such that distinguishing them may be impos-

sible for learners.

2. Theory

Gravity Spy was designed drawing on theory to increase both volunteer learning150

and motivation. By learning, we mean specifically learning to do the classification task

accurately. The literature on optimal learning strategies for information categorization

tasks suggests that procedural learning, feedback, and timing are important. Below, we

describe how these structures homogenize in Gravity Spy.

2.1. Learning to Classify Glitches155

The Gravity Spy system integrates four approaches to learning to promote accu-

rate glitch classification. Of these four, the first three (explicit training, feedback, and
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Figure 2: An example of the Gravity Spy classification interface. Volunteers categorize the glitch in the

spectrograph on the left by selecting the glitch classes it most resembles from the list on the right.

presentation of prototypes and exemplars) can be found in many crowd-sourcing and

citizen-science projects. The fourth approach (scaffolding supported by ML) adds a

new dimension to training and is the focus of this study.160

2.1.1. Explicit Training

On-line production community sites typically provide a brief introduction to the

project that explains its goals and tasks. Citizen-science projects, in particular, provide

training on the scientific tasks, how to interpret images, and how to use the classifica-

tion interface. In the Gravity Spy, training is provided as a pop-up when a volunteer first165

starts the classification task and be revisited at any time via a link on the classification

interface titled “Show the project tutorial”.

2.1.2. Feedback on Classification

Feedback on performance is critical in the learning process (Corbalan et al., 2009;

Leutner, 1993; Moreno & Valdez, 2005; Easterday et al., 2017; Goldin et al., 2017).170

The Gravity Spy system, therefore, has beginning volunteers classify some glitches

from a gold-standard dataset (i.e., glitches previously classified by members of the sci-
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ence team). Knowing the correct classification makes it possible to give the volunteers

feedback on the correctness of their classifications and to assess their accuracy in clas-

sifying those classes of glitch. As an added benefit, Corbalan et al. (2009) found that175

when feedback was provided for participants on their performance, they were more

motivated to contribute than when feedback was not provided.

2.1.3. Prototypical and Exemplary Glitches

Cognitive theories suggest that people learn perceptual categories through exposure

to prototypes and exemplars of known categories. Prototypes serve as a heuristic: an180

average representation of an entire category (Kim & Murphy, 2011). Prototypes may

help learners categorize new stimuli by severing as a reference to the prototype. Stim-

uli, which match the prototype are said to be a member of the category. Another form

of category learning emerges from the presentation of many references for the category

or exemplars (Kulatunga-Moruzi et al., 2011). Exemplars function as multiple exam-185

ples of a category and should exist across the spectrum of possible stimuli to be a part

of the category. Learners may use these previously exposed examples as references for

categorizing new stimuli.

The information integration tasks volunteers are asked to execute map well to the

use of exemplars and prototypes to learn perceptual categories. When individuals are190

asked to generalize a category, they evaluate several characteristics and weight each of

these characteristics (Jones et al., 2005; Nosofsky, 1986; Shepard, 1987; Sinha & Rus-

sell, 2011). That is, individuals, decide whether an image belongs to a category depend-

ing on how much the image is similar to or different from the prototypes and exemplars

in certain characteristics and the importance of the characteristics (i.e., weights). As195

individuals are exposed to images, they update the weights for the stimuli character-

istics. Therefore, to support the learning of image classification, volunteers should be

continuously provided with good prototypes and exemplars of the classes.

Gravity Spy presents prototypical and exemplary images of glitches to volunteers

in two ways. First, the classification interface shows volunteers prototypical instances200

of the various classes to guide their selection. When a class is selected, a larger im-

age of a prototypical example and a brief description are displayed to reinforce the
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exemplar. Second, Gravity Spy, like many Zooniverse projects, provides a field guide,

with prototypical glitches, several exemplars, and discussions of the kinds of data to be

classified. The field guide can be accessed in the classification interface.205

2.2. Scaffolded Learning

The zone of proximal development emphasizes the need to adjust learning oppor-

tunities to the learner’s current abilities (Engeström, 2014). Optimal learning opportu-

nities exist at the intersection of independent learning and achievement with guidance

and encouragement from a skilled partner (Vygotsky, 1980). Thus, training should210

exist in the zone of proximal development. Studies of learning through legitimate pe-

ripheral participation similarly suggest that learners gradually expand their access to

central activities (Lave & Wenger, 1991). The emerging literature on learning in on-

line settings specifically and eLearning more broadly (Haythornthwaite, 2014; Jones

& de Laat, 2016; Østerlund & Carlile, 2005; Luckin, 2008; Haythornthwaite & An-215

drews, 2011; Downes, 2006) suggests that learning emerges as participants gradually

expand their engagement with a task. Bringing these concerns together, the concept

of scaffolding suggests the importance of carefully sequencing participants’ learning

opportunities (Johri & Yang, 2017).

Volunteers’ progress in online production communities has been analyzed and sup-220

ported by these perspectives. In a study of Wikipedia, for instance, Bryant et al. (2005)

showed how novices often start out by reading other’s articles before making their ini-

tial contributions and gradually access more tasks crucial to the community. Preece &

Shneiderman (2009) similarly suggested that participants in peer-production sites move

from “readers to leaders”. The Fold It citizen science system (Cooper et al., 2010) pro-225

vides a series of increasingly challenging tasks to help newcomers learn how to fold

protein cells so they may take on more serious tasks in the future. In other learning

environments, we see increased calls for scaffolded mechanisms to deliver formative

feedback (Rose & Ferschke, 2016) to guide users in the learning process.

2.3. Motivation to Contribute230

As citizen-science projects depend entirely on the contributions of volunteers, vol-

unteer motivation has been a consistent topic of research, and researchers have iden-
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tified a range of motivations for citizen science. For example, surveys and interviews

show that citizen science volunteers are motivated to participate in projects by the op-

portunity to make a contribution to science (Brossard et al., 2005; Land-Zandstra et al.,235

2016a,b; Raddick et al., 2010). Accordingly, presenting volunteers with authentic tasks

should be more motivating than providing a standalone training program. Following

Crowston & Fagnot (2018), we consider the motivation for an initial contribution and

for sustained contribution separately.

3. The Machine Learning Guided Training (MLGT)240

In the Gravity Spy system, we implemented an innovative training program using

real tasks selected by a machine-learning (ML) system to scaffold the training mate-

rials, in such a way that a volunteer’s current competencies in the classification task

match the difficulty of the categorization task. We describe the MLGT components

below.245

3.1. Machine Learning

Selection of learning tasks is a common issue for scaffolded instruction (Kicken

et al., 2008; Winn, 2007). Tasks must be within a learner’s zone of proximal devel-

opment and promote individual learning to be effective. We chose to utilize machine

learning to select tasks. The process is described in detail in (Zevin et al., 2017; Ba-250

haadini et al., 2018, 2017). An image classifier is maintained on the system which pro-

cesses each spectrograms using a Convolutional Neural Network (CNN) classifier that

outputs a vector indicating the confidence that the glitch is of a particular class. Each

image has a probability of belonging to each of the 20 known classes. Based on these

image classifier scores, spectrograms are then assigned to a workflow based on confi-255

dence thresholds with high confidence spectrograms being assigned to early workflows,

and more difficult to machine classify spectrograms assigned to higher workflows.

3.2. Guided Training

In the MLGT, newcomers begin at Level 1 (shown in Figure 3) where they are

exposed to gold standard spectrograms and spectrograms requiring human annota-260
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tors. Prior to classifying, volunteers are shown a short tutorial introducing them to

the project and teaching them how to execute a classification. As volunteers classify

gold standard spectrograms, the system maintains a citizen score, which is a real-time

assessment of each volunteer’s performance classifying data; the score increases as

volunteers agree with gold-standard data decreases when responses diverge. Volun-265

teers periodically receive feedback about their current abilities to identify glitches by

providing answers to gold data. Gold data are spectrograms that have been assessed

by the science team. If the volunteer submits the same answer as the expert, they see

a message that reads “Good work! When our experts classified this image, they also

thought it was a Blip!” (or whichever class was chosen). If the answer is incorrect,270

the message reads “You responded Whistle. When our experts classified this image,

they labeled it as a Blip.” The citizen score is used to determine whether a volunteer

should be promoted to the next level. The MLGT training shows spectrograms rated

by the machine learning component having the highest confidence of classification are

assigned to the first workflow (or Level 1). For instance, only blips and whistles with275

high machine confidence scores are shown in Level 1; once a volunteer is promoted to

Level 2, the confidence threshold is relaxed for blips and whistles and volunteers are

introduced to 4 new classes: koi fish, power line, violin mode having high confidence.

The levels and new glitch classes are shown in Table 1.

Once volunteers have completed all rounds of training, introducing the classes of280

glitches, they are considered fully qualified and are given glitches to classify at varying

levels of ML confidence in all known classes or even glitches for which the ML has no

good score from the image classifier, thus contributing to novel areas of research in the

project. And as the ML can be wrong, it is still useful to the project to have a human

Figure 3: Levels for the Gravity Spy project. When the buttons are shaded (e.g., Level 4: Black Hole Merger

and Level 5: Universe Cosmic Background) a volunteer cannot access the level.
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judgment even for glitches for which the ML reports high confidence. For example,285

when a new class of glitch appears in the data, the ML will attempt to classify them

as one of the known classes. It has happened that the new glitches are confused with

an existing class, resulting in incorrect ML classifications with high confidence. These

classification errors can be corrected even by new volunteers. For instance, in the

same Gravity Spy classification task, (Crowston et al., 2019) found volunteers and the290

machine learning agreed 91% of the time on the classification of glitches.

Glitch Name

Level 1 (3) blip, whistle, none of the above

Level 2 (6)
blip, whistle, koi fish, power line, violin mode,

none of the above

Level 3 (10)

blip, whistle, koi fish, power line, violin mode, chirp,

low frequency burst, no glitch, scattered light,

none of the above

Level 4 (20)

blip, whistle, koi fish, power line, violin mode, chirp,

low frequency burst, no glitch, scattered light, helix,

45Mhz light modulation, low frequency noise fluctuations,

paired doves, 50hz, repeating blips, scratchy,

tomte, wandering line, extremely loud, none of the above

Table 1: Gravity Spy glitch classes by training level.

We expect the MLGT program to support better learning (i.e., to help volunteers

become more accurate at classifying) for two reasons. First, because the ML has high

confidence in the classification of the glitches, it is most likely that they are of the

identified class and so will be exemplary glitches that will help the volunteer to learn295

how to identify that class. Second, focusing attention initially on just a few classes

enables volunteers to master those classes before adding complexity (i.e., staying in

the volunteer’s zone of proximal development).
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4. Hypotheses

The first three types of learning support described in Section 2, i.e., tutorials, feed-300

back, and the inclusion of prototypical and exemplary images in the interface are stan-

dard in online citizen-science projects, but the fourth approach (scaffolded introduction

to categories) is novel for citizen-science projects. Furthermore, while scaffolding is a

well-accepted approach, implementing scaffolding by using ML to select among real

tasks is, as far as we know, novel. Assessing the success of the scaffolded machine305

learning guided training (MLGT) approach is the focus of the experiment reported in

this paper. We hypothesize:

H1: Volunteers who go through the MLGT will be more accurate in their classifications

than volunteers who do not go through the MLGT.

Citizen-science projects, like most online production communities, exhibit a highly-310

skewed distribution of contribution: a few volunteers contribute a lot while many con-

tribute only a little Sauermann & Franzoni (2015). Indeed, many new visitors to a

project do not contribute at all but rather leave before making a classification. We

hypothesized that exposure to complex task causes volunteers to feel overloaded and

discouraged from contributing. For example, the full Gravity Spy interface offers 22315

options (increased from the original 20), some with fairly subtle distinctions. A new

user could feel unable to perform the task accurately or at all. This problem is not

unique to Gravity Spy: the Zooniverse Snapshot Serengeti project, for example, asks

volunteers to identify animals shown in images into one of 54 species, many of which

would be unfamiliar to a novice. We expected that the MLGT, with its scaffolded de-320

sign introducing volunteers to the classes a few at a time, will be less challenging and

thereby more inviting. We therefore hypothesize:

H2: Initial exposure to fewer glitch categories in the MLGT will motivate more volun-

teers to provide an initial classification than exposure to all glitch categories in the

non-MLGT.325

We expect a scaffolded approach to presenting new tasks will motivate volunteers.
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The system is designed to appeal to volunteers’ sense of accomplishment. The initial

Gravity Spy page (Figure 3) shows all of the training levels, but volunteers can only

access the ones they have “unlocked” by successfully completing the lower levels (Note

that volunteers are free to choose to work on any of the unlocked levels, not just the330

highest one.). The system also provides an encouraging messaging when mastery at the

current level is achieved, and the next level is unlocked. In a sense, the MLGT contains

elements of gamification through the existence of levels of possible accomplishment

(Morschheuser et al., 2017), which we expected to motivate volunteers to continue to

contribute. Iacovides et al. (2013); Bowser et al. (2014) propose that gamification can335

be an effective motivator for citizen scientists. We therefore hypothesize:

H3: Volunteers who go through the MLGT will contribute more classifications than

volunteers who do not go through the MLGT.

H4: Volunteers who go through the MLGT will contribute for a longer period of time

than volunteers who do not go through the MLGT.340

5. Experiment Design

To test the hypotheses developed above, we conducted a randomized controlled

online experiment in the Gravity Spy project.

5.1. Procedure

The experiment tested the impact of the MLGT on volunteer accuracy and contri-345

bution. During the experiment, volunteers who visited the project site were randomly

assigned to the treatment condition and the other half to the control condition. Sub-

jects for the experiment were volunteers who joined the Gravity Spy project during

the experimental period from 30 October 2016 to 19 December 2016. When Zooni-

verse volunteers created an account or logged into their account for the first time after350

the experiment launched, they were randomly assigned to either the control or to the

treatment group. Volunteers retain this assignment when they visit the project on fu-

ture sessions. To assess the impact of the treatment on a volunteer, it is necessary that
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they receive the treatment from their initial interaction with the Gravity Spy system.

Therefore, we did not include data from volunteers who had already contributed to the355

Gravity Spy system before the start of the experiment.

Treatment: Volunteers who were assigned to the treatment received the scaffolded

MLGT. When first creating an account, volunteers are shown the tutorial, which con-

sists of five pages (406 words). An example of the pop-up tutorial is shown in Figure 4.

The tutorial is overlayed on the classification interface, is self-directed, and volunteers360

can exit the tutorial on any page. The tutorial contains descriptions of the project, the

task, what functions different buttons on the interface perform. The estimated read

time, calculated based on the average reading speed of 200 words per minute (wpm)

Figure 4: An example of the tutorial that volunteers in the control group are shown.

Newcomers in the treatment begin in the Level 1 workflow, where they are pre-

sented with glitches to classify that are expected to be of one of only two distinctive365

classes– blips and whistles in the current system—and given those two choices or “none

of the above” in a simplified version of the classification interface. All spectrograms

have been assessed by the (CNN) classifier, and only those having high likelihood (ap-

proximately > 90%) of being categorized as blip or whistle by the classifier are assigned

to the Level 1 workflow. Periodically, volunteers are administered gold-standard data370

to assess their performance and after a period of time when a volunteer has classified
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a sufficient number of gold-standard data to evaluate their performance the promotion

algorithm decides whether to promote the volunteer to the next level or keep them in

the current level and administer more training. At the next level, the volunteer receives

additional training with information about new glitches at that level in addition to pro-375

totypical categories. Table 1 shows the Gravity Spy workflow levels with the number

of glitch class options and the names of the glitch categories presented in each level.

Control: Upon creating an account, volunteers assigned to the control condition

were directed to a tutorial, again introducing them to the project and the classification

task. The tutorial volunteers receive a slightly modified version of the one presented in380

the MLGT. The modification needed to the level was to expand the tutorial to include

content included in the tutorials from lower levels, to ensure that the tutorial content

was the same in both conditions: presented in four parts in the treatment and all at once

in the control. The tutorial is somewhat longer than the MLGT at seven pages (525

words) with an estimated read time of 2 minutes, 38 seconds.385

As the control condition, we assigned volunteers to a slightly modified version of

the Gravity Spy Level 4 (labeled M.A.), in which volunteers can categorize a spectro-

gram using any of the glitch categories. The modified Level 4 was used as the control

condition as it matches the approach taken in other online citizen-science projects in

the Zooniverse that make all options available to all volunteers from the beginning of390

their participation. However, the design of the Zooniverse system is such volunteers

could choose to classify at a lower level even if they were initially assigned to classify

at Level 4 (see Figure 3).

6. Data Collection and Analysis

We obtained two datasets from the Zooniverse database dumps. The first dataset395

included records of classifications executed by volunteers in Gravity Spy. Each record

contained a unique user identification, the experimental group to which the user was

assigned, whether the classification was of gold data, a subject identification (a unique

identifier for the spectrograms), a timestamp indicating when the classification was

executed, and the volunteer’s response. The second dataset included the gold-data400
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classification expert responses, which included a subject identification.

The data were combined using the subject identification value in both datasets. The

data were aggregated and analyzed at the session-level. We define a session as a group

of consecutive activities separated by no more than 30 minutes. The intuition behind

the definition of a session is that volunteers often log in to the system, contribute for405

some time, and then take a break, e.g., until the next day. As volunteers do not always

log out of the system when they are done classifying. A gap of more than thirty minutes

indicates the start of a new classification session.

We computed three additional variables, which we consider as dependent variables

in our assessment of the MLGT: accuracy, contributions, and retention dependent vari-410

ables. Accuracy was computed by comparing a volunteer’s response on gold-data

to that of the expert. Accuracy is measured by a volunteers’ ability to classify gold

standard data correctly. Accuracy is a continuous variable representing the fraction

of gold-standard classifications a volunteer answered correctly. Contributions is the

total number of classifications a volunteer executed during a session. Retention was415

measured as the number of sessions in which a volunteer has contributed.

To test our hypothesis, we conducted significance tests to compare the control and

treatment groups on the independent variables described above. For H1 and H3, we

first tested the data for normality using the Shapiro-Wilk test. For variables that were

normally distributed, we used the independent samples t-test, which is a standard test420

for difference in population means. For data that were not normally distributed, we

used the corresponding non-parametric Mann-Whitney-Wilcox test, which is used to

determine whether the data come from the same distribution. For H2, we used a χ2 test

of proportions. All statistical analyses were conducted using R Studio.

6.1. Ethics Review425

The experiment protocol was reviewed by our university’s human subjects institu-

tional review board (IRB). The experimental procedure posed minimal or no risk to

the participants, as the control process was the process used in nearly all other citizen-

science projects on the Zooniverse, and the treatment was the same as used by default

in Gravity Spy. We did not collect any data about the subjects; only the count and430
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timing of the classifications they did and the agreement of those classifications with

gold-standard data. Indeed, the site does not collect demographic information of any

kind, and volunteers are identified only by a self-selected volunteer ID. A section of the

initial volunteer agreement provided when volunteers sign up for a Zooniverse account

is a disclosure that site administrators run experiments to improve the system and vol-435

unteer experience. As collecting informed consent would require volunteers to provide

identifying information that was not otherwise collected, we were permitted to run the

experiment without requesting specific, informed consent for this experiment.

7. Results

The chart in Figure 5 shows the flow of new volunteers through the experiment.440

After the experiment had been run, we discovered an omission in the data collection.

It appears that the system assigned volunteers to control or treatment when they first

visited the site but did not record the assignment until they actually came to the classi-

fication page. As a result, volunteers who dropped out while viewing the tutorial were

not recorded in the system. As the assignment to control or treatment was random,445

we believe that roughly equal numbers of volunteers were assigned to each. However,

we ended up with unequal numbers of volunteers in the control and treatment groups,

apparently because fewer volunteers finished the longer tutorial in the control group.

The final population of new volunteers and the population we analyzed was 386: 246

volunteers in the treatment and 140 volunteers in the control.450

Two hundred twenty-two of the treatment and 99 of the control group volunteers

contributed classifications. Figure 5 shows the number of volunteers that contributed

at each workflow level. In the treatment condition, volunteers have to perform well at

each level before they are promoted to the next. As a result, contributing at one level

is a prerequisite for being able to contribute at a higher level. That is, for volunteers in455

the treatment, contributing to level 1 is a prerequisite for being allowed to contribute

at level 2, and contributing to level 2 is a prerequisite for contributing to level 3. In

contrast, volunteers in the control condition began in a modified version of Level 4

(M.A.). However, the system allows volunteers to contribute at lower levels, meaning
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Figure 5: Flow chart showing how many volunteers visited Gravity Spy, created an account and were as-

signed to either the treatment or control.

that those in the control group could contribute to levels 1-3 if they choose to do so.460

Because all levels are available for the members of the control group, contributing to

level 1 is not a prerequisite for contributing to level 2 and so on. As a result, the counts

of contributions at each level are not cumulative for the control group.

7.1. Hypothesis 1: Learning

We first report on the effect of the two training regimes on volunteer classifica-465

tion accuracy in all work levels. We assessed each volunteer’s accuracy by examin-

ing whether their answers agreed with the science team answers for the gold-standard

data. However, of the 321 volunteers who did classifications, 160 did not see any gold-

standard data, decreasing the sample size in both the control (N = 46) and the treatment

(N = 115). As hypothesized, the average accuracy was significantly higher in the treat-470

ment group. The average level of agreement with gold-standard data was 60% (SD =

35.9) for volunteers in the control and 95% (SD = 9.1) for volunteers in the treatment.

A Mann-Whitney-Wilcoxon test indicates the difference is significant, W = 2395.5, p

< 0.001. As a result, H1 is supported.

7.1.1. Gold Data for Level 4 and Modified Apprentice Workflow.475

The analysis above includes data for all workflow levels. However, note that in the

initial training levels in the MLGT, volunteers select from only a subset of the classes,

which could explain the higher accuracy. To address this bias, we compared accuracy
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Treatment Control Mann-Whitney

Accuracy on Gold Data

All Levels
90% (SD = 1%)

N = 115

54% (SD = 23%)

N = 46
103.5***

Levels 4 & M.A.
56% (SD = 9%)

N = 15

46% (SD = 25%)

N = 45
t(56.82) = -2.09*

Table 2: Volunteer accuracy on gold data in control and treatment groups, overall and for just level 4. *** =

p < 0.001, ** = p < 0.01, * = p < 0.05.

for classifications done in the two groups at Level 4, in which there is the same number

of options. The results are shown in Table 2. In the control group, which starts at480

Level 4, 45 volunteers saw gold-standard data. Of the 30 volunteers in the treatment

who reached Level 4, 15 saw gold data. We found 46% (SD = 25%) agreement in

the control and 56% (SD = 9%) in the treatment group. While the distribution of

accuracy scores for all project classifications did not follow a normal distribution, the

distribution of accuracy scores for Level 4 and MA classifications did, so we analyzed485

these accuracy scores using the parametric independent samples t-test. We found the

difference in accuracy to be statistically significant at t(56.82) = -2.09, p = 0.04.

7.2. Hypotheses 2: Initial contribution

Our second hypothesis was that volunteers who went through the MLGT are more

likely to contribute classifications. In the experiment, 41 (30%) of volunteers in the490

control did not classify versus 24 (10%) volunteers in the treatment. We conducted a

test of proportions to determine whether the number of volunteers classifying in each

group was significantly different. The results of the chi-squared (χ̃2) revealed volun-

teers in the treatment were more likely to make an initial classification χ̃2(1) = 37.84,

p < 0.001. Accordingly, H2 is supported. In addition, we believe that the dropout rate495

during the initial tutorial was much higher for the control group compared to the train-

ing group, as reflected in the different final sample sizes. Unfortunately, we do not have

the data on the size of the dropout to test the hypothesis at this point in the volunteers’

interaction.
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7.3. Hypotheses 3: Contributions500

Our third hypothesis was that volunteers who went through the MLGT would con-

tribute more than those who did not. We found that volunteers in the treatment group

contributed many more classifications than volunteers in the control: the average num-

ber of classifications for volunteers in the control group was 121.1 (SD = 722.7) com-

pared with 228.2 (SD = 677.8) classifications in the treatment group (Table 3). The505

results of the Wilcoxon rank-sum test revealed a significant effect of the MLGT on

the total number of classifications volunteers contributed (W = 7609.5.5, p < 0.001).

Accordingly, H3 is supported.

Treatment Control Mann-Whitney

Classifications

All Levels
228.2 (SD = 677.8)

N = 222

121.1 (SD = 722.7)

N = 99
6770.5***

Sessions

All Levels
2.5 (SD = 5.8)

N = 222

2 (SD = 5.9)

N = 99
8783**

Table 3: Volunteer total classifications and number of sessions in control and treatment groups. *** = p <

0.001, ** = p < 0.01, * = p < 0.05

7.4. Hypothesis 4: Time as a Contributor

Our final hypothesis concerned the duration of engagement with the Gravity Spy510

project. The data on the number of sessions suggests that the MLGT increased interest

in the project. Volunteers in the control contributed on average 2 (SD = 5.9) sessions

while volunteers in the treatment contributed in an average of 2.5 (SD = 5.8) sessions

(Table 3). A Mann-Whitney-Wilcoxon test indicates that the distribution of sessions

in the training and control groups are significantly different, W = 8783, p = 0.005.515

Accordingly, H4 is supported.
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8. Discussion

The research described in this article contributes to existing knowledge about how

training impacts learning and motivation in online production communities. Through

the use of machine learning algorithms, we addressed two persistent issues for scaf-520

folded instruction - selecting learning resources that are congruent with an individual’s

competencies and having individuals train and execute tasks concurrently.

Building on prior research on learning and motivation, we proposed that a scaf-

folded introduction to the work of the Gravity Spy project would be more beneficial

and motivating for volunteers (and the project) than simply having volunteers begin525

without scaffolded training. Further, we implemented an approach to scaffolding in

which the materials provided to newcomers were selected by an ML classifier from

the actual tasks of the project, rather than being curated by an instructional designer.

Overall, the results show that this approach had the hypothesized impacts of improving

volunteer accuracy (H1), increasing conversion to a contributor (H2), increasing the530

number of classifications (H3), and improving retention (H4).

Below, we discuss the role of scaffolding in support of learning and motivation

of newcomers and the implication of our findings for the design of informal online

learning environments in particular.

8.1. The Benefits of Scaffolding Work for Learning and Motivation535

The literature on learning systems has increased in calls for scaffolding access to

materials suggesting learners in online settings might find materials confusing and thus

increase attrition (Rose & Ferschke, 2016). In computer-supported collaborative learn-

ing environments, scaffolding has been shown to enhance participant learning (Rienties

et al., 2012) and support community-level benefits such as increasing the volume of540

contribution and retention among learners (Tuckman, 2007). The study we presented

above showed similar findings; however, our main contribution is that scaffolding has

similar effects when materials are served to learners using ML-supported training.

The scaffolded MLGT works in several ways. First, the system gradually expands

the number of categories presented to the volunteers. As they were promoted, clas-545

sification options were introduced a few at a time, expanding the number of options
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and exemplary glitches shown in the classification interface and the classes of gold-

standard data and glitches presented. Additionally, each level includes its own tutorial

to gradually introduce features of the system that aid in the classification task and infor-

mation about the new glitch classes. Finally, as volunteers graduate to new workflows,550

the category boundaries are expanded.

From a theoretical learning perspective, one can conceptualize this process as 1)

legitimate peripheral participation where newcomers gradually expand their access to

central activities (Lave & Wenger, 1991); and 2) an ML-supported approach that intro-

duces work fitting each participant’s zone of proximal development (Engeström, 2014).555

While these two perspectives do not exclude one another, we can argue that the first

highlights the phased introduction of the tutorials, prototypical and exemplary glitches,

and feedback on gold-standard data. The second emphasizes the ML-supported intro-

duction of work fitting the participants’ level of skill. The research findings do not in-

dicate if leveling or the gradual introduction of more difficult glitches matter the most.560

Future research may help untangle the benefits of these different design principles.

When it comes to motivation, the work design literature suggests that motivating

work exists at the intersection of familiarity and challenge (Herzberg, 1968). We sus-

pect that the ML-supported selection of glitches helps to approximate the right level of

familiarity and challenge. Again, we are not certain whether it is the phased introduc-565

tion of work, organized into levels, or the ML-supported selection of image difficulty

that plays the most important motivational role. Future research can parse out the ef-

fects of these two design choices.

Interestingly, we found that a number of volunteers in the non-scaffolded condition

who started in the modified Level 4 workflow, classified in lower level workflows after570

the experiment completed (Figure 4). For instance, 18 volunteers classified data in

workflow one after having been assigned to the control. Volunteers who have worked

at Level 4 have already been presented with a comprehensive tutorial, exemplars, and

prototypical glitches; we suspect these demoting volunteers were overwhelmed in the

modified apprentice workflow and preferred the scaffolded learning. Likewise, there575

should be little appeal to those motivated by levels to move backward. As a result, the

most convincing explanation is that these volunteers seek work matching their zone of
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development, neither too hard nor too easy.

To be successful in information integration tasks similar to those in Gravity Spy,

Ashby & Maddox (2005) suggests procedural learning opportunities are necessary. Our580

MLGT includes training, feedback, and scaffolding to introduce categories in which

glitches may appear quite different than the prototypes presented to learners in the tu-

torial or field guide. Categories composed of a large number of exemplars presented

contiguously in the classification task facilitates learning. Additionally, learning in-

formation integration tasks improve with materials vetted for difficulty. The category585

boundaries increasingly expand to include more challenging information integration

tasks. Exposure to numerous glitch examples that increasing departures from a proto-

type also appear to improve this scaffolded learning.

Beyond the positive findings associated with learning and motivation among vol-

unteers, the Gravity Spy design offers benefits to the science team behind the project.590

Scaffolding allowed volunteers to work on real data during their training and not solely

on pre-classified glitches. As a result, participants start contributing to science work

from the very beginning. They do not have to complete the training before they become

productive members of the project.

These findings are also relevant for other human categorization tasks such as teach-595

ing radiologist to categorize different diseases based on the appearance of various

anomalies in medical images.

8.2. Training Volunteers in online Production Communities

Transforming non-experts into high performing contributors remains a challenge

for many online systems. While our results are promising, they also point to future600

research opportunities.

First, volunteers come to online communities with varied competencies. Some

newcomers might arrive with more background knowledge on the task or be more pro-

ficient learners. For example, among citizen scientists, many people contribute because

of a prior interest in science (Jennett & Cox, 2017; Rotman et al., 2012). Therefore,605

participants would likely benefit from a personalized tutoring system that starts at their

current level rather than from scratch (Karataev & Zadorozhny, 2017).
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To properly target training requires an estimate of a volunteer’s current level of

knowledge. Few citizen-science projects evaluate volunteers’ knowledge level at all.

Those that do generally rely on proxies, such as the number of classifications con-610

tributed. These are quite crude measurements of volunteers’ skill level. In the present

project, we rely on responses to gold-standard data to assess a volunteer’s knowledge,

but as noted above, this approach is limited by the amount of gold data volunteers see.

Bayesian methods offer a promising approach to modeling user knowledge as they

can incorporate prior knowledge about a volunteer and update it from experience. Such615

models are widely used to improve the performance of ML systems and human learning

(Tenenbaum, 1999; Khajah et al., 2016; Vie et al., 2018). For instance, Corbett &

Anderson (1994) Bayesian knowledge tracing (BKT) model has been applied to model

learning in the tutoring system as students practice different skills. In our setting, such

models could use responses to both gold and non-gold data. However, the citizen620

science context has to account for the possibility that the ML classification might be

incorrect, rather than the volunteer’s classification.

Knowing the volunteers’ level also opens up new possibilities for interpreting their

contributions, specifically for making decisions about the class of a glitch. It should

be possible to achieve confidence in the collective assessment with judgments from625

fewer experienced participants than novices. Similarly, images that are confidently

rated by the ML might be retired with fewer classifications or with classifications from

less experienced volunteers. We also suspect that asking users to classify a set of pre-

defined glitches to assess their performance (see Vie et al. (2018)) might also be useful

for personalized learning.630

Second, volunteers learn from resources beyond engaging in the task and receiving

feedback from their tagging of gold-standard data. It is well-known in learning sys-

tems that formative feedback is important for learning. However, creating meaningful

opportunities for feedback remains a challenge (Goldin et al., 2017). As indicated by

the learning literature, a number of resources can help participants master a task. In635

the context of Gravity Spy, volunteers may engage with FAQs, tutorials, and comment

forums to learn the practices and norms for contribution. However, these resources can

be voluminous and disorganized, making it difficult for volunteers to know which are
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relevant to them at the given time. Also, they are relatively static and less personalized.

As a result, volunteers could benefit from a scaffolded access to project resources in640

addition to the introduction to the tasks. To implement such an approach requires a bet-

ter understanding of the types of resources, participants find helpful at various stages

of their participation. For instance, it seems intuitive that tutorials would be most ef-

fective with newcomers, while FAQ and comment forums would predominantly benefit

more advanced participants, but these intuitions should be tested with data. Addition-645

ally, given the rich conversations that occur via discussion fora, one might explore the

extent to which these materials can act as feedback opportunities. Several studies have

experimented with this form of feedback as an intelligent tutoring system, e.g., Rose

& Ferschke (2016); Easterday et al. (2017). For instance, Easterday et al. (2017) sug-

gests several features for a crowd-based design critique system where designers learn650

through formative feedback from peers that might be applicable in this context.

Third, learners may face a paradox of choice caused by overexposure to numerous

categories. Introducing categories gradually across four levels helps reduce this para-

dox by allowing learners to focus on the morphological characteristics and perceptual

distinctions of a smaller set of categories at a time.655

Finally, this paper has focused on the image classification task, but as we noted,

volunteers may learn and be motivated by the broader scientific questions behind the

project, in this case, gravitational waves. Additional learning resources exist to support

this form of learning, but we know little about how best to scaffold this material.

8.3. Limitations660

Field experiments in online production systems pose challenges that may limit re-

searchers’ inferences about volunteers and the community of the study. The research

presented here is no different. While the true experimental design does control many

threats to internal validity, there are two caveats.

The most apparent limitation here is the nature of the assignment of volunteers to665

the conditions of the study. First, the system did not correctly record the assignment

of volunteers to condition, meaning that our analysis starts partway into the study. We

believe, but do not have data to show that more volunteers dropped out in control con-
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dition than in the treatment condition. However, this threat, known as experimental

mortality, would be expected to leave the control condition with more motivated vol-670

unteers than the treatment, and so does not explain our findings that the treatment group

seemed motivated. In other words, while it is unfortunate that the experimental data

were not completely captured, this lacuna does not compromise the main contribution

of the study.

Further, the system did not prevent volunteers in the control group from contribut-675

ing at other levels, and in fact, 18 control group members at some point did visit other

levels. This threat is known as design contamination, meaning that some of the control

group received the treatment. This contamination would make the control and treat-

ment groups more similar than otherwise, so again, this threat does not explain our

findings. Indeed, as both threats tend to reduce the difference between the control and680

treatment groups, the actual effect of the treatment may be greater than we observed.

The second limitation concern the measurement of volunteer accuracy. We could

not control the frequency with which volunteers see gold data or which class of glitch

is shown. As a result, some volunteers did not see any gold data and so could not be

included in our analysis of accuracy. However, this omission should affect the control685

and treatment groups equally.

Finally, the trade-off for design with strong internal validity is weaker external va-

lidity. We have shown that our training approach works in the Gravity Spy setting, but

can not say for sure how the approach will work elsewhere. However, the underlying

theoretical rationale for the approach suggests that it could be useful in citizen science690

projects more generally and perhaps for other kinds of online communities. Further-

more, the training has a number of parameters, e.g., how many classes to introduce and

after what level of performance. The experiment has tested the only point in this design

space, and so does not provide insight into the optimal settings.

9. Conclusions695

In summary, we have presented an approach to newcomer training that offers learn-

ers ML-selected tasks in an attempt to fit their zone of proximal development, work that
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is not too easy or too difficult. Our experiment shows that this approach is successful

in increasing the accuracy of the volunteers while also increasing motivation and con-

tribution. Even these initial classifications are useful to the project, as ML assessment700

is not perfect and so needs to be checked.

This approach to training addresses the dilemma faced by online communities in

particular, as making good use of newcomers’ contributions is important in setting

where many volunteers only contribute a few times. Equally important, this approach

to training scales to large numbers of participants who can engage in on-the-job training705

without requiring more experienced workers to evaluate the work quality.

Although our focus has been on learning in an online production community, it

should be possible to apply the approach to other settings in which many newcomers

need to learn to perform a variety of tasks. Other citizen science projects are also us-

ing scaffolded training with machine learning (see: Supernova Hunters Wright et al.710

(2017)). The main limitation is the need to train an ML-model to do the task. How-

ever, ML technology is rapidly improving and being applied to more kinds of work,

suggesting that there will be many future applications. Often, the hope is to use the

ML to complete automate the task, but in many cases, this hope may be too optimistic.

The approach presented here offers a path to creating a collaboration between human715

and machine learning that takes advantage of the strengths of each while enabling both

to learn, improve, and contribute.
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