
 

  
Abstract—We present the design of a citizen science system that 

uses machine learning to guide the presentation of image 
classification tasks to newcomers to help them more quickly learn 
how to do the task while still contributing to the work of the 
project. A Bayesian model for tracking volunteer learning for 
training with tasks with uncertain outcomes is presented and fit to 
data from 12,986 volunteer contributors. The model can be used 
both to estimate the ability of volunteers and to decide the 
classification of an image. A simulation of the model applied to 
volunteer promotion and image retirement suggests that the model 
requires fewer classifications than the current system. 
 

Index Terms— Citizen science, machine learning, training 
 

I. INTRODUCTION 
O be successful, online production communities need to 
sustain a critical mass of skilled and active participants [6], 

[11], which requires attracting newcomers and helping them 
learn to be effective participants in the community. In 
traditional organizations, new members often go through 
formal training to learn how to contribute. However, the 
particular characteristics of online communities present at least 
two challenges to newcomer training. First, many online groups 
rely on volunteers who contribute in their free time, reducing 
their willingness to participate in formal training prior to 
engaging. A second complication is the skewed distribution of 
contributions seen in most projects: many volunteers contribute 
only a few times and only a few become sustained contributors 
[5]. This skew means that requiring training that increases the 
barrier to entry and delays newcomers’ contributions might 
result in many participants not contributing at all.  

To make online communities more effective calls for systems 
that enable motivated participants to make productive 
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contributions to the community while also supporting an 
efficient and engaging learning process for newcomers. In this 
paper, we present the design of a citizen-science project that 
incorporates machine learning to guide training for new 
volunteers using real tasks with uncertain outcomes. The 
specific contribution of this paper is to develop and empirically 
examine a Bayesian model for tracking volunteer performance 
to guide training using such tasks. 

A. Setting: Gravity Spy  
Our study is set in the context of the Gravity Spy [19] citizen 

science project (http://gravityspy.org/). Citizen science is a 
broad term describing scientific projects that rely on 
contributions to scientific research from members of the general 
public (i.e., citizens in the broadest sense of the term). There are 
several kinds of citizen-science projects: some have volunteers 
collect data, while others, including the one we examine in this 
paper, have volunteers analyze existing data. The interactions 
between volunteers and the project organizers typically take 
place via the Web, e.g. on a site that accepts contributed data or 
that presents data to be analyzed and collects volunteers’ 
annotations (e.g., Zooniverse.org), thus making them examples 
of online communities.  

The Gravity Spy system was developed to support the Laser 
Interferometer Gravitational-wave Observatory (LIGO). LIGO 
comprises two detectors that measure minute changes in 
distance caused by the gravitational waves distorting space as 
they travel through it. However, the sensitivity that enables 
LIGO to detect distant astrophysical events also makes it very 
susceptible to non-astrophysical instrumental and 
environmental noise, referred to as “glitches”. Glitches hamper 
the detection of gravitational wave events, either by blocking 
events outright or by increasing the number of potential events 
to be examined. At LIGO’s current sensitivity, detectable 
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astrophysical events are expected to occur only about once a 
week, while a glitch may occur every few seconds, making a 
search for true events akin to finding a needle in a haystack.  

Similar glitches may have a common cause that can be 
eliminated if it can be identified, so finding and classifying 
glitches stand out as core tasks for improving the LIGO 
detectors. However, with thousands of glitches, the LIGO 
researchers do not have the manpower to examine them all. 
Reliance on computers alone has also so far fallen short, as the 
diversity of glitches defies easy attempts at classification. At 
present, there are 21 known types of glitches, but many glitches 
do not fit one of these categories and so may be examples of as-
yet-unidentified classes of glitch. Presently, humans are much 
better at the visual processing needed to identify similar types 
of glitches. Given these concerns, the project has developed a 
citizen-science approach to classifying glitches.  

When using a citizen-science platform such as Zooniverse, 
volunteers are presented with images and asked to classify them 
into one of the known categories. Gravity Spy also provides 
options of “none of the above” or “no image” for images that in 
fact do not include an event of interest. The current interface for 
the Gravity Spy system is shown in Fig. 1: an image of a glitch 
to be classified is shown on the left as a spectrograph, with time 
on the x-axis, frequency on the y and intensity represented as 
colour from blue to yellow, and possible classes on the right. 
The task for the volunteers to learn is how to identify the correct 
class of the glitch from the spectrograph.  

II. MACHINE-LEARNING-SUPPORTED TRAINING  
To address the training problem faced by citizen-science 

projects and online production communities more generally, the 
Gravity Spy system creates a symbiotic relationship between 
citizen-science volunteers and computer algorithms, each 

helping the other learn to classify images. Volunteers sort 
through vast amounts of data to create a dataset that can be used 
to train machine-learning (ML) algorithms. And conversely, as 
the ML algorithms learn from this classified dataset, they select 
images to present that assist humans to learn. The first process 
is common; the second is the main innovation of the Gravity 
Spy system.  

A. Machine Learning 
We start by briefly describing the ML applied to the glitches. 

In addition to a store of images to be classified, the system 
includes gold-standard data sets, glitches that have been 
labelled by human experts. ML models are trained using the 
gold-standard data (one model for each class of glitch). A 
description of the ML approach is given in [19]. The trained 
ML models are then applied to all unlabelled glitches, 
annotating each with the ML model’s level of confidence that 
the glitch is a member of each class. Often, the confidence level 
for one of the classes will be much higher than for the others, 
suggesting that that glitch is a member of that class. But it also 
possible for none of the confidence levels to be high, meaning 
that the ML models are not able to classify the glitch or for more 
than one confidence to be at an intermediate level, meaning that 
the ML models are uncertain about the classification.  

B. Training Citizen Science Volunteers 
As with other citizen science project, the Gravity Spy website 

provides volunteers with a variety of training materials, such as 
a short tutorial on the site operation and a field guide describing 
the different glitch classes. The main advance in the Gravity 
Spy system is that it uses ML results to train new human 
volunteers. The system moves new volunteers through a 
sequence of levels in which they are presented with different 

 
Figure 1. Full Gravity Spy classification interface (http://gravityspy.org/).  



 

classification tasks intended to improve their ability to classify 
images [15]. Essentially, the system acts like a tutoring system 
in picking tasks to help a beginner to learn, but selecting from 
the natural tasks of the citizen-science project rather than from 
a predefined set of training instances. 

Specifically, a new volunteer is presented with glitches to 
classify that have been determined by the ML models as being 
likely to be of one of only two distinctive classes (in the current 
system, blips and whistles). Volunteers are asked to classify the 
glitch as being of one of the two classes or “none of the above” 
(i.e., with a reduced version of the interface shown in Fig. 1). 
Having only two distinctive classes of glitch to handle makes it 
easier for the volunteer to learn to distinguish the glitches. Once 
the volunteer is classifying glitches of the initial classes 
successfully (as described in [19] and below), the volunteer is 
advanced to the next training level, in which they see glitches 
believed by the ML to be of additional classes.  

In the initial version of the system, there were four training 
levels, presenting 2, 5, 9 and 21 glitch classes respectively (i.e., 
2, 3, 4 and 12 new glitch classes), as well as “none of the 
above”. Earlier levels include classes that are more common 
(more volunteers classify at the earlier levels, so more data are 
needed) and more distinctive (to facilitate learning the 
distinction between classes). The number of glitches introduced 
at each level was chosen to gradually increase the number of 
glitches while keeping the training levels short enough to retain 
volunteer interest. More recently, the final level was split into 
two level, each introducing half as many new classes, for 
reasons that will be explained later in the paper.  

In designing the system, we expected the relation between 
the ML-determined degree of confidence and likelihood of the 
glitch being of the given class to be as shown in Fig. 2. We 
expected that nearly all glitches above a certain threshold of ML 
confidence would be judged by the human experts to be of that 

class; nearly all below a certain threshold as not of that class; 
and in the intermediate range of confidence, a mix of in and not 
in the class. Further, when the ML has a high level of 
confidence in the classification of the glitches, we expected that 
these glitches would be exemplary images that would help the 
volunteer to learn how to identify that class of glitch. 
Accordingly, the design of the system was to use glitches at the 
top of the ML range for training, while the others were left to 
be examined by experienced volunteers.  

Once volunteers have completed all rounds of training 
introducing the classes of glitches, they are considered fully 
qualified and given images to classify at varying levels of ML 
certainty in all known classes or even glitches for which the ML 
has no good classification.  

In addition to being helpful to support learning, progress 
through levels of training also motivates volunteers by 
appealing to their sense of accomplishment [13], [17]. This 
motivation is further emphasized in the interface, e.g., by 
showing the unachieved levels greyed out and through 
messaging when mastery at the current level is achieved.  

III. MODELLING VOLUNTEERS’ LEARNING 
To properly target training requires an estimate of a 

volunteer’s current level of knowledge. However, few current 
citizen-science projects evaluate volunteers’ knowledge level. 
Those that do generally rely on proxies, such as the number of 
classifications contributed. To determine when volunteers have 
mastered the classification tasks and are ready to move to the 
next level, the Gravity Spy system maintains a model of each 
volunteer’s ability that is updated with each classification.  

We are experimenting with different approaches to 
modelling user ability. In this paper, we propose using Corbett 
and Anderson’s [4] BKT model as a basis for the volunteer 
model. Bayesian methods are widely used to improve the 

 
Figure 2. Expected relationship between ML confidence (x-axis) in a glitch belonging to a class and proportion of 

images assessed by human experts as belong to that class, with examples of glitches in each grouping. 



 

performance of ML systems and human learning [9], [16]. The 
BKT Model in particular has been applied to model student 
learning in tutoring system as students practice different skills. 
The contribution of this paper is to propose and test 
modifications to this model to fit the ML-driven approach, by 
accounting for the possibility that the ML classification might 
be incorrect, rather than the volunteer’s classification. 
Classifications of gold standard data can also be used to update 
the volunteer model without the uncertainty of the ML 
classification.  

A plate diagram for the proposed model is shown in Fig. 3. 
The diagram shows that a volunteer’s answer y for the 
classification of an image depends on a set of parameters for the 
volunteer, for the skill of being able to recognize a particular 
class of image and for the particular image. For each volunteer 
and each class of glitch, the model maintains an estimate of 
𝑝(𝐿$), the probability that the volunteer has learned how to 
classify after having classified n images of this class. 𝑝(𝐿&), the 
estimate of a volunteer’s initial ability, is a parameter.  

The estimate is updated in two ways. First, it is updated from 
the prior estimate of learning in a Markov process that models 
a volunteer transitioning from not knowing to knowing how to 
classify. From [4], the formula to update the model’s estimate 
of the volunteer’s ability is:  

 
𝑝(𝐿$'() = 	𝑝(𝐿$|answer) + 31 − 𝑝(𝐿$|answer)6	𝑝(𝑇) (1) 
 
where 𝑝(𝐿$) is the probability that the volunteer knows how to 
classify after n classifications, answer is the volunteer’s 
observed classification, either agreeing or disagreeing with the 
ML classification of the image and 𝑝(𝑇) is the probability of 
learning to classify if the volunteer does not already know how. 
Note that the BKT model does not include forgetting. As a 
result, it is appropriate for modelling short-term skill 
acquisition rather than long-term learning [7].  

Second, the model updates the estimates of volunteers’ 
ability based on their performance. 𝑝(𝐿$|action), the updated 
probability that volunteers know how to classify given their 
answer for the current image (either agreeing or disagreeing 
with the ML classification), is estimated using Bayesian 
inference [1]: 

𝑝(𝐿$|agree) =
𝑝(agree|𝐿$)	𝑝(𝐿$)

𝑝(agree)  

 (2) 
 
The components of (2) are defined in (3)–(5). As in the 

original BKT model in [4], there are two parameters that affect 
a volunteer’s answer when classifying images of a particular 
class: 𝑝(𝐺), the probability of a volunteer getting the answer 
right without knowing how to classify (guessing) and 𝑝(𝑆), the 
probability of getting the answer wrong even while knowing 
how to classify (slipping).  
 
𝑝(agree|𝐿$) = 𝑝(𝑀$)31 − 𝑝(𝑆)6 

+	𝑝(𝐶)31 − 𝑝(𝑀$)6𝑝(𝑆) (3) 
𝑝(agree) = 𝑝(𝑀$)	𝑝(correct) 

+	𝑝(𝐶)31 − 𝑝(𝑀$)631 − 𝑝(correct)6 (4) 
𝑝(correct) = 𝑝(𝐿$)31 − 𝑝(𝑆)6 + 31 − 𝑝(𝐿$)6𝑝(𝐺) (5) 
 

In these equations, the new parameter 𝑝(𝑀$) is the estimated 
probability that the particular image seen on this step is of the 
class identified by the ML classification algorithms. This factor 
is novel in our model and reflects the fact that rather than a set 
of exercises for which the system knows the correct answer, we 
instead have a set of images for which the system believes it 
knows the correct classification, but could be mistaken. Note 
that when 𝑝(𝑀$) is 1, 𝑝(agree) = 𝑝(correct), the probability 
that the volunteer’s classification is correct, and the model 
reduces to the standard BKT model. We also need an additional 
parameter, 𝑝(𝐶), the probability that the ML and the volunteer 
agree by chance when both are wrong.  

We now explain (3)–(5). First, the chance of the volunteer 
agreeing with the ML classification of an image while knowing 
how to classify (3) is the chance that the ML is correct and the 
volunteer has not slipped or that the ML is not correct, the 
volunteer has slipped and by chance both have settled on the 
same incorrect choice. A simple model of chance agreement is 
to assume that when incorrect, the ML and volunteer choose 
other classes independently and with equal probability, which 
would make 𝑝(𝐶) = 1/(#	𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 1). However, classes 
appear with varying frequency and some classes of glitch are 
more often confused with each other, so the probability of 
chance agreement is likely to be different, which is why we 
have made it a parameter of the model.  

The unconditional probability of the volunteer agreeing with 
the ML classification (4) is the probability that both the ML and 
the volunteer are correct or that they are both incorrect but 
choose the same wrong class and so mistakenly agree.  

The probability that the volunteer correctly classifies the 
image (5) is the probability that the volunteer knows how to 
classify and did not slip or that the volunteer does not know and 
guessed. Note that a volunteer’s answer being correct or 
incorrect is defined relative to the image’s (unknown) true 
classification and so is often not directly observable in practice. 

Finally, the formula to update the estimate in the case of the 
volunteer disagreeing with the ML model (6) is just the inverse 
of formula 2: since agreeing and disagreeing are binary 

 

Figure 3. Plate diagram for the Knowledge Tracing 
model, adding a factor M for confidence in ML 

classification of the image. 
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decisions, the probability of disagreeing is one minus the 
probability of agreeing. When volunteers disagree with the ML 
classification, that answer can be taken as evidence about their 
ability at the chosen classification instead. The parameters, 
𝑝(𝑇), 𝑝(𝑆),	𝑝(𝐺), 𝑝(𝐶) and initial ability, 𝑝(𝐿&), can thus be 
estimated by fitting the model to minimize the prediction error 
for a dataset of responses or through Bayesian sampling. 

 

𝑝(𝐿$|disagree) =
31 − 𝑝(agree|𝐿$)6𝑝(𝐿$)

31 − 𝑝(agree)6
 

 (6) 
 
The same model (specifically (4)) can be used to predict 

whether volunteers’ classifications of images will agree or 
disagree with the ML classifications given their ability as 
estimated from answers on previous classifications.  

IV. FITTING THE MODEL TO DATA 
In this section, we present an investigation of the model 

using data drawn from the Gravity Spy system. The purpose of 
this analysis is first to check the assumptions of the design of 
Gravity Spy and second to assess the performance of the 
proposed model. We retrieved all of the classifications 
recorded on the system as of 28 December 2018, a total of 
3,315,590 classifications from 12,986 users on 232,364 
glitches (of a total of 297,376), though analyses used only 
subsets of this data. 

A. ML Confidence vs. ML Correctness 
We first checked our assumption about the relation between 

ML confidence and agreement of volunteer judgements with 
the ML judgements. This analysis was run on the 61,395 
glitches for which we could determine ML correctness. We 
considered the ML as correct if its classification agreed with 
the expert classification for gold data or with the consensus of 
the volunteer classifications for retired images. (Glitches are 
retired from the current version of the system once a sufficient 
number of human classifications have been contributed.) For 
retired images, we took the most frequently chosen class as the 
consensus classification.  

 Fig. 4 shows a plot of the fraction of ML classifications that 
agree with the human classification versus ML confidence 
plotted from high to low, left to right. We determined the 
average accuracy in 30 bins of equal numbers of glitches, 
hence the uneven width of the bins. The data show that the ML 
is quite accurate when confidence is high, but the accuracy 
drops off as the confidence decreases. We examined these 
accuracy curves for each class of glitch separately and found 
generally similar patterns. 

B. ML Confidence vs. Volunteer Correctness 
We next checked the assumption that images with higher ML 

confidence are easier for the volunteers to classify, since this is 
a key assumption for our training system. We followed the same 
process as above, computing the average volunteer 
classification accuracy vs. ML confidence across 1,293,569 
classifications for the 61,395 glitches for which we had the ML 

confidence and could determine if the volunteer classification 
was correct. We determined volunteer correctness in the same 
way as above. The resulting plot is shown in Fig. 5. The figure 
shows that the human accuracy is high (between 88% and 96%) 
regardless of the ML confidence.  

We were concerned that this result might be due to the fact 

 
Figure 4. Fraction of ML classifications consistent with human 

scorers vs. machine learning confidence. N= 61,395. 

 
Figure 5. Fraction of volunteer classifications consistent with 
human scorers vs. machine learning confidence. N=61,395. 

 
Figure 6. Fraction of volunteer classifications consistent with 

human scorers vs. machine learning confidence for “gold” data. 
N=4,071. 



 

that the “correct” classification for a glitch is determined most 
often from the consensus of volunteer classifications, making 
the definition circular. To check this effect, we redid the plot 
for the 4,071 glitches where the correct answer was determined 
by experts (so-called “gold” data), shown in Fig. 6. For this plot, 
we used only 10 bins because of the smaller amount of data. 
This plot shows that the volunteers were generally quite 
accurate regardless of ML confidence, suggesting that humans 
and the ML see different things in the data.  

Nevertheless, in both this curve and the previous one, 
volunteer accuracy was high for high levels of ML confidence, 
confirming that these glitches should be useful for training.  

C. Individual Volunteer Learning 
We next fit the volunteer classification accuracy data against 

our model. We address in turn the data used, the overall analysis 
approach and the specific model we developed. 
1) Data  

The first issue was what data to use. We were concerned that 
data from short-term participants would not be illuminating for 
the question of how volunteers learn with experience, since 
those volunteers do not gain experience. Therefore, we dropped 
12,831 classifications (less than 1%) from 2,325 volunteers 
who had contributed 10 or fewer classifications in total and 
25,266 classifications that were contributed anonymously. (The 
fact that 18% of volunteers contributed fewer than 10 
classification illustrates the skew in the distribution of the 
number of classifications performed.) We also dropped 
classifications of glitches for which we could not determine the 
correct answer (i.e., not yet retired by the system). Finally, the 
model’s prediction of the probability that a volunteer has not 
learned decreases with the number of classifications by a factor 
of 31 − 𝑝(𝑇)6 each trial. If 𝑝(𝑇) = 0.1, the chance of not 
having learned falls below 1% after 44 trials. Therefore, we fit 
the model against a volunteer’s first 60 classification of each 
class of glitch. We were left with 1,026,652 classifications by 
10,655 volunteers on 51,047 glitches.  
2) Analysis Approach 

To fit models to the data, we used the Stan Bayesian analysis 
system [3]. A Bayesian approach means that rather than being 
point values, we view model parameters (e.g., 𝑝(𝑇)) as having 
a distribution that reflects our uncertainty about their values. In 
other words, we assume that there are probability distributions 
for both the observed data and for the parameters of the 
distributions of the data. For example, we assume that 
classification data follow a Bernoulli distribution and seek to 
determine a distribution for the population probability rather 
than a point estimate of its value. The analysis is Bayesian 
because we determine the distributions of the parameters by 
updating an assumed prior distribution with the evidence from 
the observed data. The prior distributions of the parameters may 
be based on theory or (as in our case) be “uninformative”, e.g., 
a uniform distribution from 0 to 1 for a probability. Note that 
this application of Bayes Theory in model estimation is distinct 
from and should not be confused with its use in the BKT model. 

To use Stan, a probability model is written in the Stan 
programming language describing how observed data depend 

on parameterized distributions. The model is compiled into a 
function that computes the log likelihood for a given set of 
parameter values. Given such a model, one can run an optimizer 
to find the parameter values that maximize the likelihood. To 
instead perform a Bayesian analysis, Stan estimates the 
posterior distributions of the parameters using Markov chain 
Monte Carlo (MCMC) sampling, i.e., by drawing random 
samples from the posterior distributions of the parameters (a 
Monte Carlo estimate). The MCMC algorithm draws samples 
through a stochastic process where each sample depends on the 
prior one (i.e., a Markov chain), drawn in a way that the 
parameters sample the region of highest likelihood. The 
sampling is seeded with random parameter values drawn from 
the prior distributions but after some iterations the sampling 
usually converges on the region of the highest likelihood. 
3) The Model 

Prior work using the BTK model has noted that it is not 
possible to distinguish empirically between a high initial state 
of knowledge (𝑝(𝐿&)) and a high rate of successful guessing 
(𝑝(𝐺)) [2], [18]. Reference [18] offered an approach to address 
the identifiability problem using the forward algorithm. 
However, we found it difficult to modify the key equations [18, 
eq. 11–12] to include the uncertainty of an ML classification. 
We therefore developed an alternative approach to modelling 
performance.  

We noted that the BKT model does not include the possibility 
of forgetting: learners only transition from not knowing to 
knowing. As a result, guessing while not knowing is only 
possible early in a learner’s history, before having learned, 
while slipping is only possible later, after having learned. To 
capture this transition, we modelled sequential pairs of answers 
by the same user for the same class of glitch. For two 
consecutive answers, there are only three possible states of 
knowledge: not knowing on the first answer and not learning 
for the second; not knowing at first but learning for the second; 
and having learned for both.  

We develop a model for the probability of pairs of answers 
in two steps. First, we compute the probability of a learner being 
in one of the three possible states of knowledge for the two 
answers after some number of trials as a function of 𝑝(𝐿&) and 
𝑝(𝑇). For instance, the probability of not knowing then 
knowing for trials 1 and 2 (i.e., learning between trial 1 and 2) 
is (1 − 𝑝3𝐿&)𝑝(𝑇)6, not knowing initially but then learning.  

Second, for each state of learning, we compute the 
probability of each of the four possible combination of answers 
as a function of 𝑝(𝑆) and	𝑝(𝐺). For instance, if the learner 
learns only for the second trial, then the probability of 
answering correctly both times is 𝑝(𝐺)31 − 𝑝(𝑆)6, guessing on 
the first trial when not knowing, then not slipping on the second 
trial, once having learned. We then sum across the three states 
of learning to determine the total probability of each of the four 
possible pairs of answers at each trial given particular 
parameters.  

Finally, to avoid double counting, we only included three of 
the four counts in the model, since the fourth is determined by 
the other three, and used only non-overlapping pairs of 



 

classifications (i.e., 1st and 2nd, 3rd and 4th, etc.). Pairing the 
classifications reduced the number of classifications included to 
a total of 491,428 pairs.  

We found that the model did not converge with the default 
Stan settings, so as suggested by the diagnostics, we increased 
the target acceptance rate for samples to 0.9, which decreases 
the sample step size. With these settings, we obtained an 
estimate of 0.830 for initial level of ability (𝑝(𝐿&)), 0.308 for 
the probability of learning (𝑝(𝑇)), 0.043 for slipping (𝑝(𝑆)) and 
0.303 for guessing (𝑝(𝐺)), with almost no variation across 
samples. In a Bayesian analysis, the uncertainty in an estimate 
can be expressed in terms of a high-density interval (HDI), 
analogous to a confidence interval in a standard analysis. A 
95% HDI means the range from the 2.5 percentile to the 97.5 
percentile of the parameter values in the samples, i.e., 95% of 
the sample values are in the HDI. As HDIs are determined by 
the sampling, they need not be symmetrical, unlike confidence 
intervals. In this case, the HDIs were the same as the estimates 
to three decimal places. The estimates for 𝑝(𝐿&) and 𝑝(𝐺) were 
correlated at – 0.61, suggesting that these parameters tradeoff 
somewhat, even though the estimates are precise.  

D. Volunteer Agreement with ML 
Volunteer accuracy can only be determined post hoc, once 

glitches have been retired and the consensus classification 
determined. The innovation in this paper is to develop a model 
for tracing learning based on observed agreement between the 
volunteer and an ML classification. In this section, we discuss 
fitting this model to the data.  

Table I compares the accuracy of the ML and the volunteer 
classifications. It shows the number of classifications made 
grouped by whether the volunteer or the ML was correct or not 
(93% and 95% correct respectively), and in the case that both 
were incorrect, whether they picked the same incorrect class 
(agreed or disagreed, 1.1% and 0.4% respectively). In the cases 
where the volunteer and the model disagreed, it was about 1.5 
times more likely for the volunteer to be wrong. When the 
volunteer and the ML were both wrong, they agreed in 75% of 
the cases, which is much higher than would be expected by 
chance. The high agreement for incorrect choices suggests that 
volunteers and the ML are being similarly mislead.  

A key factor in the agreement model is 𝑝(𝑀$), the expected 
ML correctness. We determined this value for each glitch by 
mapping the ML confidence of the glitch being classified to the 
observed level of agreement in the data of the ML to the human 
classification (i.e., as shown in Fig. 4). The ML confidence 
levels were binned into 40 bins and 𝑝(𝑀$) was determined as 
the average correctness of ML classifications of the glitches in 
the bin. The average correctness was weighted by the number 
of classifications: the system is designed to show beginning 
volunteers glitches of higher levels of confidence, so volunteers 
are more likely to see correctly classified glitches. We 
computed accuracy curves separately for each class of glitch. 

As with the standard BKT model, we fit the model with 
individual level data using non-overlapping pairs of answers. 
We again dropped classifications from anonymous and short-
term volunteers, used data for which we knew whether the 

volunteer agreed with the ML and used only the first 60 trials 
for the fitting, a total of 247,764 pairs of classifications. There 
are fewer classifications for this fit because some of the 
classifications were done for gold data on which the ML was 
not run. Three of the four combinations are fit as a draw from a 
Bernoulli distribution (the fourth redundant combination was 
again omitted). 

When we fit the model, we obtained an estimate of 0.844 for 
initial level of ability, 0.093 for rate of learning, 0.015 for slip 
and 0.529 for guess. We also estimated 𝑝(𝐶), the probability of 
chance agreement, which we found to be 0.116. The 95% HDIs 
were 0.844O&.&&P'&.&&Q, 0.096±0.003, 0.015O&.&&('&.&&S, 0.529O&.&SS'&.&S& and 
0.116O&.&VW'&.&XV respectively. The estimates for 𝑝(𝐿&) and 𝑝(𝐺) 
were correlated at – 0.88, though again the estimates were 
precise. These estimates are similar to the standard BKT model 
for the initial level of ability (𝑝(𝐿&)) (0.844 vs. 0.830) and for 
slipping (𝑝(𝑆)) (0.015 vs. 0.043) but differ for the rate of 
learning (𝑝(𝑇)) (0.093 vs. 0.308) and for guessing (𝑝(𝐺)) 
(0.529 vs. 0.303). It appears that the second model is attributing 
agreements to successful guesses rather than to learning.  

V. DISCUSSION: USES FOR THE MODELS 
In this section, we discuss two possible uses for the models.  

A. Using the Model for Volunteer Promotion Decisions 
First, once estimated on an initial dataset, the model can be 

used to track learning by volunteers, as in the original BKT 
model. Specifically, the model can be used to decide when to 
introduce additional tasks (i.e., to promote a volunteer to the 
next training level). A key parameter here is the required level 
of performance. Corbett and Anderson [4] used a threshold of 
0.95, though without specific justification for that choice. The 
required level can be set by considering the desired level of 
classification performance to make the system work efficiently, 
as we discuss below in the discussion of image retirement.  

A simulation of the model given above with 𝑝(𝐿&) = 0.844,
𝑝(𝑇) = 0.093, 𝑝(𝑆) = 0.015, 𝑝(𝐺) = 0.529 and 𝑝(𝐶) =
0.116 (the values found from fitting the model) found that if 
volunteers agree with the ML classification on each image, they 
reach a predicted probability of knowing how to classify of 0.95 
after classifying only 2 images even when given images that are 
only 0.6 likely to be of the given class. Reaching 0.99 
probability takes 5 classifications. The quickness of the learning 
attribution mostly reflects the high predicted initial level of 

Table I. ML versus volunteer classification accuracy.  

Volunteer 
correct No Yes Total 

ML 
correct Disagreed Agreed 

  

No 4,639 
0.4% 

14,208 
1.1% 

44,200 
3.4% 

63,047 
5.4% 

Yes 66,424 
5.1% 

1,164,098 
90.0% 

1,230,522 
94.6% 

Total 85,271 
7.0% 

1,208,298 
93.0% 

1,293,569 

  



 

knowledge. If a volunteer disagrees initially, more 
classifications are needed before the result of the model would 
reach the required level of predicted ability, as is discussed 
below.  

B. Deciding Image Classifications 
Second, we consider how the models discussed above can be 

used for image classification. The goal of the Gravity Spy 
system is to provide information to the LIGO scientists on the 
classification of glitches. The system uses judgement from 
multiple volunteers to make the final decisions on classification 
of images. In many current Zooniverse systems, each item is 
classified by a fixed number of volunteers (as many as fifteen) 
to find a consensus. Explicitly modelling the level of 
confidence in the classification of an image should make much 
more efficient use of human effort, as images could be 
classified with only a few human classifications if the ML 
confidence is high and the volunteers agree with that 
classification.  

To achieve this end, the system can maintain a model of the 
likely classification of each image that is initialized by the ML 
model and prior estimates of accuracy vs. confidence (i.e., 
𝑝(𝑀&)	from above) and updated with each human 
classification. As with the volunteer model, we are currently 
experimenting in the project with different approaches to 
modelling confidence in the classification of images.  

The BKT model developed above for volunteers can be used 
for images as shown in equations 7–9, drawing on elements 
defined above. In these equations, n is also the number of 
classifications, but in this case, the number of classifications of 
a particular image done by different volunteers. 𝑝(𝑀$) is 
probability that ML classification is correct after n volunteer 
classification and agree / disagree refers to the classification, 
whether the volunteer agrees or disagrees with ML 
classification of image. Note that this model includes 
differences in volunteer ability when forming a belief for the 
classification of images (that is, the elements of the equations 
incorporate 𝑝(𝐿) for the volunteer making the classification). 

 

𝑝(𝑀$'() = 𝑝(𝑀$|agree) =
𝑝(agree|𝑀$)	𝑝(𝑀$)

𝑝(agree)  

 (7) 

𝑝(𝑀$|disagree) =
31 − 𝑝(agree|𝑀$)6𝑝(𝑀$)

31 − 𝑝(agree)6
 

 (8) 

 𝑝(agree|𝑀$) = 𝑝(correct) (9) 
 
If the level of belief in a particular classification crosses a 

desired threshold, meaning that there is a consensus among the 
ML models and the human volunteers on the classification, the 
image can be retired from the system with that classification. 
Successfully classified images are provided to the science team 
to use. They can also be added to the gold standard data and 
used to retrain the ML model for image classification, thus 
using human judgement to improve the ML model.  

Contrariwise, if after some number of human classifications 
there is no consensus, then the image can be labelled as none of 
the above. The efficiency of the process depends on the 
accuracy of the human labelers. If volunteers slip too often (for 
example), it is hard to learn from their answers. Fortunately, the 
data suggest that volunteers are largely accurate.  

We simulated image retirement decisions using the model 
parameters estimated from fitting the model. If volunteers of 
beginner ability always agree with the ML classification, a 
glitch can move from 0.6 to 0.999 likely to be of a particular 
class after 2 classifications (many fewer than the current static 
number required). If the initial ML confidence is only 0.05 (i.e., 
if the initial ML classification is for a different class), 3 
consistent answers are sufficient for retirement. The quick 
retirements reflect the high level of belief in the knowledge of 
the volunteers (i.e., a high value for 𝑝(𝐿&)).  

C. Simulating Promotion and Retirement with Real Data  
The above simulations have assumed that volunteers always 

agree with the ML classification, which is not the case. 
Therefore, we simulated promotion and retirement decisions 
using the actual pattern of agreements or disagreements in the 
classification data (using all of the data). We set 𝑝(𝑀&) to the 
predicted ML accuracy for the ML’s predicted class (as 
discussed above) or 0.05 for other classes (approximately the 
average ML error rate). In these simulations, we tracked 
volunteer performance on both their choice and the ML-
predicted class when these disagreed. The required level of 
performance for both volunteers and images was set to 0.99. 

The results from this simulation for volunteer promotion 
decisions are shown in Table II and compared to the actual 
performance of the current system. Classification is the count 
of classifications of glitches that must be trained to be promoted 
to that level. (The mean and standard deviation reported for the 
actual data are of 95% trimmed data to remove outliers, e.g., 
problems that might have been created as the promotion system 

Table II. Comparison of simulated promotion decisions to actual promotions in the current system, 
showing number of new classes to be learned, mean number of classifications needed to achieve 0.99 

learning, and number and fraction of volunteers promoted. (Actual data are 95% trimmed.) 

Level Classes 
Simulated 

classifications N % 
Actual classifications 

N 
Mean SD Trimmed mean Trimmed SD 

2 2 5.2 4.6 11,504 88.6% 33.7 29.6 6,429 
3 3 12.6 18.4 4,975 38.3% 68.8 60.6 3,741 
4 5 43.4 66.1 2,226 17.1% 213.3 178.1 1,697 
5 12 334  1  3324 2973 92 

  



 

was being worked on.) In the current system, each level also 
includes instances of glitches trained in the previous levels, 
which about doubles the total number classifications that have 
to be done at each level. Nevertheless, it can be seen that the 
proposed system would promote more volunteers more quickly 
on average, with the exception of level 5. The averages are 
reasonable for the amount of work expected of volunteers, 
though with high variance.  

The number of classifications required is not linear in the 
number of classes to be learned: 2.6 instances per class to reach 
level 2, but 25.7 instances per class for the one volunteer who 
reached level 5. This effect is partly due to the increased 
difficulty of the classes, partly to the potential confusion with 
more new classes and largely due to the need to see a sufficient 
number of the glitches of all of the classes in one level before 
promotion to the next. It can be shown that the expected number 
of classifications needed to see all of the classes grows as the 
square of the number of classes (assuming classes are equally 
likely and uniformly distributed). Promotion from level 1 to 2 
requires learning only 2 classes; from level 4 to 5, 12 classes, 
implying 36 times as many classifications on average. To 
reduce the time to promotion, level 4 of the system was recently 
split into two levels each with half the new classes. The 
simulation shows that this change would result in 313 
volunteers being promoted to the intermediate level and 10 to 
the top level vs. only 1 with the original configuration.  

Considering glitches, the simulation retired 140,512 of the 
228,415 non-gold glitches seen (61.5%), with an average of 
only 2.7 classification each (sd = 2.9). This measure of system 
performance is likely an underestimate, as if the glitches had 
actually been retired, other glitches would have been shown to 
volunteers, perhaps enabling them to gain enough 
classifications to also be retired.  

79.2% of the retired glitches were retired as the class chosen 
by the ML, in 2.0 classifications on average (indicating that the 
initial estimate of the ML accuracy and the volunteer ability 
were high). Retirements that disagreed with the ML took 5.3 
classifications on average. The small number of classifications 
needed to overturn the prior ML classification suggests that a 
high level of expertise has been estimated for the volunteers.  

VI. CONCLUSION 
In this paper, we have presented the design of a system that 

uses ML classifications of images to guide training for human 
volunteers in a citizen-science project. The goal of the training 
is to help volunteers more quickly learn how to classify images 
while making productive contributions to the project.  

The model presented in this paper fits the observed learning 
well and does demonstrate learning overall. Of course, to 
properly test the value of the training regime will require an 
experiment comparing the performance of volunteers with and 
without training. We hope to report on such an experiment 
soon. We further expect that the training will also motivate 
users to contribute more. If the system works as expected, the 
training approach presented here that should be of interest to 
other citizen-science projects.  

A further important benefit of the training approach 

described here is that because the ML cannot be certain of the 
classification, having a volunteer confirm the classification—
even a beginner still being trained—is still useful to the project. 
This approach contrasts with training that is either entirely 
preset or that relies exclusively on gold-standard data. In those 
cases, the work done by the volunteer as part of the training 
does not directly advance the project’s work. As many 
volunteers report that they are motivated by the fact that they 
are contributing to science [14], it is important to ensure that the 
work done is real to maintain volunteer interest.  

The system described above also offers an interesting 
platform for further experimentation. First, the training system 
described above has a large number of parameters (e.g., how 
many and which classes to introduce at each level, the ML 
certainty cutoffs or the right mix of images of different 
certainties at different points in the process). Experimentation 
will be useful to determine the optimal settings. For example, 
we can test the benefits and tradeoffs of advancing volunteers 
more quickly: quicker advancement might be good for 
motivation but negative for performance (and vice versa).  

As well, the system enables us to experiment with other 
factors that affect volunteer performance, e.g., the kinds of 
motivational messages provided or information on the novelty 
of images. A particularly interesting set of questions are around 
the effects of feedback that can be provided to volunteers based 
on the ML certainties. Again, it is possible that there are 
tradeoffs involved, e.g., that letting a volunteer know the result 
of the ML evaluation might be useful feedback to improve 
performance but also potentially demotivating if the ML and 
the volunteer disagree or volunteers feel that their contributions 
are unnecessary given the capabilities of the ML. A further 
problem is that this approach to feedback runs the risk of 
training the human volunteers in the idiosyncrasies of the ML, 
thus reducing the benefit of having diverse kinds of classifiers 
in the system. These effects need to be carefully considered by 
introducing such feedback.  

Future research could explore extensions to BKT model such 
as modelling forgetting [8] or making individual estimates of 
the model parameters (e.g., [12]). A first step is to look for 
evidence that volunteers’ accuracy in fact drops after a break. 
A possibility to handle such forgetting between sessions is, at 
the start of each session, to restart volunteers who have not yet 
mastered some classes to the default estimated initial level for 
the classes still to be learned. Those who are in the highest level 
of the system, having learned all the classes, might also have 
their estimated abilities reduced after a long gap in contribution.  

The models suggest two additional ways to improve system 
performance. First, the system can pick images for the 
volunteers to classify that will be particularly informative for 
improving the ML models (e.g., images that have confidence 
levels between the cutoffs), a process called active learning.  

Second, since the system is tracking each volunteer’s ability, 
it can also assign tasks based on ability (e.g., assigning harder 
tasks to more capable volunteers). However, as [10] point out, 
when picking an item to be classified in a crowdsourcing 
setting, the number of existing classifications should be 
considered. If the item already has many human classifications, 



 

another classification will not reduce the ML model 
uncertainty.  

The contribution of this paper has been to discuss how 
machine learning can be used to support learning in a citizen 
science project and to present a Bayesian model for tracking 
learning progress in this setting. The system thus implements a 
redesigned relationship between the technology of the system 
and the human volunteers to facilitate learning by both.  
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