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Abstract 
Citizen science projects rely on contributions from 

volunteers to achieve their scientific goals and so face 
a dilemma: providing volunteers with explicit training 
might increase the quality of contributions, but at the 
cost of losing the work done by newcomers during the 
training period, which for many is the only work they 
will contribute to the project. Based on research in 
cognitive science on how humans learn to classify 
images, we have designed an approach to use machine 
learning to guide the presentation of tasks to 
newcomers that help them more quickly learn how to 
do the image classification task while still contributing 
to the work of the project. A Bayesian model for 
tracking this learning is presented.  

1 Introduction  

Online production communities rely on 
participants to contribute and in many cases to manage 
and maintain the community. To be successful, 
communities need to sustain a critical mass of skilled 
and active participants [9, 16], which requires 
attracting newcomers and helping them learn to 
become effective participants in the community.  

In traditional organizations, new members often go 
through formal training to learn how to contribute. 
However, online communities present a challenge to 
newcomer orientation and training. Many online 
groups consist of volunteers contributing in their free 
time, reducing their willingness to participate in 
formal training regimes prior to engaging with the 
community. A further complication is the skewed 
distribution of contributions in many projects: most 
volunteers contribute only a few times and only a few 
become long-term contributors. As a result, increasing 
the barrier to entry and delaying newcomers’ 
contributions (e.g., by requiring training) may mean 
that many end up not contributing at all.  

Some crowdsourcing systems allow newcomers to 
learn through observation of the contributions of more 
experienced users. For instance, Bryant et al. [3] found 
in a study of Wikipedia that new editors begin by 
reading articles before they make their initial 

contribution. However, this form of transparency is 
not possible for all types of online work and it can also 
take significant time for newcomers to learn through 
observation.  

To make online communities more effective calls 
for new approaches to newcomer learning that 
redefine the relationship between the humans and the 
infrastructure. The technology must enable motivated 
participants to make productive contributions to the 
community while also supporting an efficient and 
engaging learning process for newcomers.  

In this paper, we present the design of a citizen 
science project site that incorporates machine learning 
to guide training for new volunteers. Citizen science is 
a broad term describing scientific projects that rely on 
contributions to advance scientific research from 
members of the general public (i.e., citizens in the 
broadest sense of the term). There are several different 
kinds of citizen science projects: some have volunteers 
collect data, while others, including the ones we 
examine in this paper, have volunteers analyze already 
collected data. The interactions between volunteers 
and the project organizers are typically via the Web, 
e.g. on a site that accepts contributed data or that 
presents data to be analyzed and collects volunteers’ 
data or annotations (e.g., Zooniverse.org).  

Many online citizen science projects just give 
volunteers a brief overview of the task and the site 
features before allowing them to contribute. This 
approach has some advantages. First, it ensures that 
more of the volunteers’ time is being used for the work 
of the project. Furthermore, knowing that the work is 
useful and being given challenging tasks may be 
motivating for volunteers. However, if it takes time to 
learn to do the task correctly, then the initial 
contributions may not be of high enough quality to be 
useful for science (as experienced by [4]). 
Furthermore, if new volunteers find the task too 
challenging, they may become discouraged and drop 
out of the project.  

To ensure that volunteers understand the task, a 
few projects (e.g., Star Dust @ Home) provide explicit 
training for new users, as would a traditional 
organization. A disadvantage of this approach is that 
during the training newcomers are not being 
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productive and many might never do any real work. 
Furthermore, developing a training program requires 
additional work by the project developers to create 
appropriate training materials.  

In short, citizen science projects face a dilemma in 
how to handle newcomers. Providing training might 
increase the quality of contributions, but at the cost of 
the work done by newcomers during the training 
period, which for many is the only work they will 
contribute. On the other hand, not providing training 
might mean that the initial contributions are not useful. 
Our system addresses this dilemma.   

2 Theory  

The design of our system draws on cognitive 
theories about how humans learn to classify, leading 
to insights about how a system can train users and 
track human performance to estimate a person’s ability 
at the task. We focus in particular on theories about 
image classification, which is a common citizen 
science data analysis task, and the specific focus of the 
system we are building. For example, in the 
Zooniverse Snapshot Serengeti project, volunteers 
identify the species of animals in photographs.  

Cognitive theories suggest that people learn to 
classify images though exposure to prototypes and 
exemplars of known categories. Prototypes serve as a 
heuristic: an average representation of an entire 
category [12]. Exemplars function as examples for the 
category [13]. When individuals classify stimuli, they 
find similarity of stimuli with the prototypes and 
exemplars. Here, similarity is based on their own 
internal representation (i.e., psychological 
representation), rather than external properties of 
stimuli [20]. When individuals are asked to generalize 
a category, they evaluate several characteristics and 
weight each of these characteristics [e.g., 10, 18, 21, 
22]. That is, individuals make a decision if a stimulus 
belongs to a category depending on how much the 
stimulus is similar with or different from the 
prototypes and exemplars in certain characteristics and 
how the certain characteristics are important in 
deciding similarity (i.e., weight). As individuals 
experience more stimuli, they update the weights for 
the characteristics of stimuli.  

Therefore, to support learning of image 
classification, volunteers should be continuously 
provided with good prototypes and exemplar images. 
For example, many Zooniverse projects provide a 
“field guide”, with example images of the kinds of 
objects to be classified.  

To properly target training requires some 
estimation of a volunteer’s current level of knowledge. 
Currently, few citizen science projects evaluate 

volunteers’ knowledge level. Those that do generally 
rely on proxies, such as the number of classifications 
contributed. To track volunteer performance, we are 
adapting the Bayesian Knowledge Tracing Model, 
proposed by Corbett and Anderson [8]. Bayesian 
methods are widely used to improve the performance 
of machine learning systems and human learning [11, 
23]. In particular, the Bayesian Knowledge Tracing 
Model has been widely applied to model student 
learning. The model traces student's’ knowledge or 
skill changes as they practice different skills.  

Volunteer models can be used to provide 
individualized feedback on user's action. If the system 
can track what each individual learns, it can provide 
individualized feedback adjusting their level of 
knowledge or skills. Providing proper feedback is 
critical in learning process [7, 14, 17]. In an 
experiment, Corbalan, Kester, and Van Merriënboer 
[7] found that when feedback was provided for 
participants on their performance,  they were more 
motivated than when feedback was not provided. In 
particular, explanatory feedback, explaining why their 
answer is correct or wrong, has been found to be more 
effective than corrective feedback, saying whether the 
answer is correct or wrong [6]. Tracking individuals’ 
performance allows a system to provide explanatory 
feedback suited for their level.   

The above discussion has focused on human 
learning of classification tasks, but machine learning 
for image classification is also an active research area 
that has recently seen great advances [e.g, 5]. There is 
evidence that humans and computers offer distinct 
skills in classification. For example, Beaumont et al. 
[2] created a hybrid model of machine learning 
combined with crowdsourced training data from 
citizen scientists for the Milky Way Project. They 
found that “untrained” citizens can identify patterns 
that machines cannot detect without training, while 
machine learning algorithms can use the output of 
citizen science projects as input training sets.  

3 Machine-learning-supported training  

To address the problems faced by citizen science 
projects, we are building a system that will enable a 
symbiotic relationship between citizen science 
volunteers and computer algorithms, each helping the 
other learn to classify images. Volunteers will sort 
through vast amounts of data to build a robust “gold 
standard” image dataset that will train machine-
learning algorithms. As the ML algorithms learn from 
this classified dataset, they will be able to select 
images that assist humans to learn.  
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3.1 Data  

In addition to a store of images to be classified, the 
system includes two data sets: the image-taxonomy 
and the gold-standard data sets. The first is the 
descriptions and examples of image classes. The 
second data store contains a subset of the images 
(referred to as “gold standard” data) that have been 
labelled by human experts with the correct 
classification, possibily including “none of the above” 
for images that do not fit any of the known classes.  

3.2 Machine learning 

Machine learning (ML) models are trained using 
the gold standard data (one model for each class of 
image). The trained ML models are applied to all 
unlabelled images, annotating each unlabelled images 
with the ML model’s level of confidence that the 
image is a member of each class. Often, the confidence 
level for one of the classes will be much higher than 
for the others, suggesting that that image is a member 
of that class. But it also possible for none of the 
confidence levels to be high, meaning that the ML 
models are not able to classify the image or for more 
than one confidence to be at an intermediate level, 
meaning that the ML models are uncertain about the 
classification.  

As noted above, ML models and human experts do 
not necessarily see the same things in data. The 
relation between the ML-determined degree of 
confidence and likelihood of the image being of the 
given class is expected to show a distribution as shown 
in Figure 1. Nearly all images above a certain 
threshold of ML confidence will be judged by the 
human experts to be of that class; nearly all below a 
certain threshold as not of that class; and in the 
intermediate range of confidence, a mix of in and not 
in the class.  

3.3 Training citizen science volunteers 

Using a citizen science platform such as 
Zooniverse, volunteers are presented with images and 
asked to classify them into one of the known 
categories, none of the above or “no image” for images 
that in fact do not include an object of interest.  

Citizen science projects typically provide a brief 
introduction to the project, explaining its goals, how to 
interpret the images and how to use the classification 
interface. The research on learning reviewed above 
suggests that an effective way to train humans to 
perform image classification tasks is to provide them 

with exemplary images from which to learn. 
Accordingly, citizen science classification interfaces 
generally show the volunteers examples of images of 
all the classes as exemplars to guide the choice. When 
a classification is selected, a larger image and a brief 
description can be displayed to reinforce the exemplar.  

As noted above, a main advance in our system is 
that we will use the machine learning results to train 
the human volunteers. Specifically, the system, guided 
by the ML results, will move new volunteers through 
a sequence of levels in which they are presented with 
different classification tasks intended to improve their 
ability to classify images [20]. Essentially, the system 
is acting like a tutoring system in picking tasks to help 
a beginner to learn, but selecting from the natural tasks 
of the citizen science project rather than from a 
predefined set of training materials.  

Specifically, a volunteer who has just joined the 
project will be presented images that have been 
classified by the ML models as being likely to be of 
one of only two very distinctive classes. For each 
image, volunteers will be asked to annotate it as being 
an instance of one of the two classes or “none of the 
above” (i.e., with a reduced version of the interface). 
Because the ML has a high level of confidence in the 
classification of the images, it is most likely that these 
images are of the identified class. We further expect 
that these will be exemplary images that will further 
help the volunteer to learn how to identify that class of 
image.  

It may also be desirable to give beginner volunteers 
a few images from the gold standard data set to 
classify, since knowing the correct classification 
makes it possible to give the volunteers feedback on 
the correctness of their classifications, which is also 
effective in promoting learning. Depending on the ML 
performance, it might be possible to use the ML 
classification as a basis for feedback. If there is a level 
of ML confidence above which essentially all images 
are in fact of the predicted class, then users could be 
given feedback based on those images as well.  

The system will maintain a model of each 
volunteer’s ability to classify images of each class and 
will update the models after each classification (e.g., 
increasing its estimate of the volunteers’ ability when 
they agree with an assessment and decreasing it if they 
disagree). We propose using Corbett and Anderson’s 
[8] Bayesian Knowledge Tracing model for the 
volunteer model, with modifications to account for the 
possibility that the ML classification might be 
incorrect, rather than the volunteer’s classification. A 
limitation of this approach is that the training will only 
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be available for logged in users whose progress can be 
tracked. 

The model maintains an estimate of 𝑝(𝐿$) , the 
probability that the volunteer has learned how to 
classify after having classified n images. There is a 
separate model for each class of image. From [8], the 
formula to update the model’s estimate of the 
volunteer’s ability is equation 1 in Table 1 (below), 
where 𝑝(𝑇) is the probability of learning to classify if 
the volunteer does not already know how. Noted that 
the model does not include forgetting, though that 
could be added. 𝑝(𝐿$), the updated probability that the 
volunteer knows how to classify given their answer 
(agreeing or disagreeing with the ML classification) is 
estimated using Bayesian inference from the prior 
estimate and the answer, as shown in equation 2 [1]. 
𝑝 𝐿' , the initial estimate of the volunteer’s ability, is 
another parameter of the model.  

The components of those equations are given in 
equations 3–5. In those equations, 𝑝(𝑀)  is the 
estimated probability that the particular image seen on 
this step is of the class identified by the ML model. 
This factor is novel in our system. There are two 
further parameters drawn from [8]: 𝑝(𝐺) , the 
probability of a volunteer getting the answer right 
without knowing how to classify (guessing) and 𝑝(𝑆), 
the probability of getting the answer wrong even while 
knowing how to classify (slipping). Note that a 
volunteer’s answers being right and wrong are defined 
according the image’s true classification.  

The chance of the volunteer agreeing with the ML 
result while knowing how to classify is thus just the 
chance that the ML is correct and the volunteer has not 
slipped or that the ML is incorrect and the volunteer 
slipped (equation 3). The probability of the volunteer 
agreeing with the ML result unconditioned is the 
probability that both the ML and the human are correct 
or both are incorrect (equation 4). Finally, the 
probability that the volunteer has a correct evaluation 
is that they know how to classify and did not slip or do 
not know but guessed correctly (equation 5). The 
formula for the case of the volunteer disagreeing with 
the ML model (equation 6) is just the inverse: since 
agreeing and disagreeing are binary decisions, the 
probability of disagreeing is one minus the probability 
of agreeing.  

The same model can be used to predict a 
volunteer’s classification of a image given the answers 
on previous classifications (i.e., using equation 4). The 
parameters, 𝑝(𝑇) , 𝑝(𝐺) , 𝑝(𝑆)  and initial ability, 
𝑝(𝐿') , can be estimated by fitting the model to 
minimize the prediction error for an initial dataset. The 
same parameters can be used for all classes of image, 
reducing the number of parameters to be estimated, or, 
with enough data, different parameters can be 

estimated for each class of image (e.g., to allow some 
classes to be harder to learn or easier to confuse). More 
advanced approaches to estimation have been 
suggested that take into account features of the answer 
in estimating the probability of a slip or guess [1] or to 
estimate models with parameters individualized for 
each student [24].  

Once estimated, the model can be used to track a 
new volunteer’s learning. When the volunteer model 
shows that the volunteer’s abilities on the set of classes 
being trained are above a certain threshold, the 
volunteer will be advanced to the next training level, 
in which they see images believed by the ML to be of 
additional classes. Corbett and Anderson [8] used a 
threshold of 0.95, though without specific 
justification. Again, during the training period, 
volunteers will only see images that the ML model has 
classified with high confidence, which should serve as 
good exemplars from which to learn the additional 
classes.  

A quick simulation of the model given above with 
𝑝 𝑇 = 	0.2  and 𝑝 𝐿' = 	0.3  shows that if the 
volunteer agrees with the model on each step, they will 
reach the 0.95 level after only 3 steps when given 
images that are at least 0.95 likely to be of the given 
class. With images that are at least 0.8 or 0.9 likely, 
the process takes 4 steps. Of course, volunteers may 
not always agree with the ML if they are still learning 
to classify or slip. In [1], the baseline probability of a 
slip was 44% and of a guess, 6.6%. While it is unlikely 
that these numbers apply exactly to the citizen science 
tasks, using the parameters in the simulation and 
allowing for occasional disagreement raises the 
median number of classifications needed in each 
condition by 1, though the learning process is 
occasionally extended.   

The progression through the levels is also expected 
to be motivating for volunteers, as it will appeal to 
their sense of accomplishment. This motivation can be 
further emphasized in the interface, e.g., by showing 
the additional classifications to be presented in the 
future greyed out or with a lock icon and with 
appropriate messaging when mastery at the current 
level is achieved.  

Once the user has completed all of the rounds of 
training on the different classes of images, they are 
considered fully qualified and will be given images to 
classify at varying levels of ML certainty in all known 
classes or even images for which the ML has no good 
classification, thus further contributing to the work of 
the project. Since the system is tracking each 
volunteer’s ability, it can also assign tasks based on 
ability (e.g., assigning harder tasks to more capable 
volunteers).  
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3.4 Image classification 

The system uses judgement from multiple 
volunteers to make the final decisions on classification 
of images. Explicitly modelling the level of 
confidence in the classification of an image should 
make much more efficient use of human effort than the 
usual approach of having each item looked at by as 
many as fifteen volunteers to find a consensus. We 
anticipate that images may be classified with only a 
few human classifications if the ML confidence is high 
and the volunteers agree.  

To do so, the system maintains a model of the 
likely classification of each image that is initialized by 
the ML model (i.e., 𝑝 𝑀' ). The ML confidence could 
be used directly, or adjusted to reflect a probability 
based on the curves shown in Figure 1.  

Each human judgement is used to update the 
beliefs, as shown in equations 7–9. In this case, n is 
also the number of classifications, but in this case, the 
number of classification of the image done by different 
volunteers. Note that this model takes in to account 
differences in volunteer ability when forming a belief 
for the classification of images.  

If the level of belief in a particular classification 
crosses a threshold, meaning that there is a consensus 
among the ML models and the human classifiers on 
the classification, the image can be given that label. 
Contrariwise, if after some number of human 
classifications there is no consensus, then the image 
can be labelled as none of the above. The process 
depends though on the accuracy of the human labelers. 

If the chance that they slip is too high (for example), it 
is hard to learn from their answers. 

Successfully classified images will be provided to 
the science team to use. They can also be added to the 
gold standard data and used to retrain the ML model 
for image classification, thus using human judgement 
to improve the machine learning model. Indeed, the 
system can pick images for the volunteers to classify 
that will be particularly informative for improving the 
ML models (e.g., images that have confidence levels 
between the cutoffs), a process called active machine 
learning. However, as [15] point out, when picking an 
item to be classified in a crowdsourcing setting, the 
number of existing classifications should be 
considered. If the item already has many 
classifications, another will not reduce the ML model 
uncertainty. Finally, the parameters for learning model 
can be periodically re-estimated using the additional 
data.  

 
4 Discussion 

In this paper, we have presented a system that uses 
ML classifications of images to guide training for 
human volunteers in a citizen science project. The goal 
of the training is to help volunteers more quickly learn 
how to classify images and thus become productive 
contributors to the project. We expect that this training 
will also motivate users to contribute more. If the 
system works as expected, it will be an approach that 
should be of interest to other citizen science projects.  

An important benefit of this approach is that 
because the ML cannot be certain of the classification, 
having a volunteer—even a beginner being trained—

Table 1. Model for volunteer learning and image classification.	 	
1)  𝑝 𝐿$ = 	𝑝(𝐿$12|answer) + 1 − 𝑝 𝐿$12 answer 	𝑝(𝑇) Model parameters 

𝑝(𝐿)  volunteer knows 
how to classify   

𝑝(𝑇)  volunteer learns 
how to classify on 
this step 

𝑝(𝑀)  ML classification 
is correct  

𝑝(𝑆)  volunteer classifies 
incorrectly even 
though they know 
how (slip) 

𝑝(𝐺)  volunteer classifies 
correctly even 
though do not 
know how (guess) 

𝑛 number of 
classifications 

2)  𝑝 𝐿$12 agree =
𝑝 agree|𝐿$12 	𝑝 𝐿$12

𝑝 agree
 

3)  𝑝 agree|𝐿$12 = 𝑝 𝑀$12 1 − 𝑝 𝑆 + 1 − 𝑝 𝑀$12 	𝑝(𝑆) 

4)  𝑝 agree = 𝑝 𝑀$12 	𝑝 correct + 1 − 𝑝 𝑀$12 (1 − 𝑝 correct ) 
5)  𝑝 correct = 𝑝 𝐿$12 1 − 𝑝 𝑆 + 1 − 𝑝 𝐿$12 	𝑝 𝐺  

6)  𝑝 𝐿$12 disagree =
(1 − 𝑝 agree|𝐿$12 )	𝑝 𝐿$12

(1 − 𝑝 agree )  

  

7)  𝑝(𝑀$) = 𝑝 𝑀$12 agree =
𝑝 agree|𝑀$12 	𝑝 𝑀$12

𝑝 agree
 

8)  𝑝 𝑀$12 disagree =
(1 − 𝑝 agree|𝑀$12 )	𝑝 𝑀$12

(1 − 𝑝 agree )  

9)  𝑝 agree|𝑀$12 = 𝑝(correct) 
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confirm the classification is still useful to the project. 
This approach contrasts with training that is either 
entirely preset or that relies exclusively on gold 
standard data. In those cases, the work done by the 
volunteer as part of the training is does not directly 
advance the project’s work. As many volunteers report 
that they are motivated by the fact that they are 
contributing to science [19], keeping the work real is 
important.  

The system described above offers an interesting 
platform for experimentation. Our first planned 
experiment is to compare the performance of 
volunteers who have gone through the training process 
described above to the performance of those who start 
right away with the full set of classes for classification 
(i.e., the typical approach for citizen science projects). 
We want to test if users who get the training contribute 
more and show better performance on the 
classification tasks.  

Second, the training system described above has a 
large number of parameters (e.g., how many and 
which classes to introduce at each level, the ML 
certainty cutoffs or the right mix of images of different 
certainties at different points in the process). 
Experimentation will be useful to determine the 
optimal settings. For example, we can test the benefits 
and tradeoffs of advancing volunteers to higher levels 
more quickly: quicker advancement might be good for 
motivation but negative for performance (and vice 
versa).  

Finally, the system will enable us to experiment 
with other factors that affect volunteer performance, 
e.g., the kinds of motivational messages provided or 
information on the novelty of images. A particularly 
interesting set of questions are around the effects of 
feedback that can be provided to volunteers based on 
the ML certainties. Again, it is possible that there are 
tradeoffs involved, e.g., that letting a volunteer know 
what the ML evaluation was might be useful feedback 
to improve performance but also potentially 
demotivating if the ML and the volunteer disagree or 
volunteers feel that their contributions are unnecessary 
given the ML. 

The main contribution of the paper has been to 
discuss how machine learning can be used to support 
learning in a citizen science project and to present a 
Bayesian model for tracking learning progress in this 
setting. The proposed system embodies a redesigned 
relationship between the technology of the system and 
the human volunteers to facilitate learning by both.  
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