
Effective Work Practices for Software Engineering:
Free/Libre Open Source Software Development

Kevin Crowston
Syracuse University

School of Information Studies
Syracuse NY USA
+1 315 443–1676
crowston@syr.edu

Hala Annabi
The Information School

University of Washington
Seattle, WA, USA
+1 206 616-8553

hpannabi@u.washington.edu

James Howison & Chengetai Masango
Syracuse University

School of Information Studies
Syracuse NY USA
+1 315 443–4508

{jhowison,cmasango}@syr.edu

ABSTRACT
We review the literature on Free/Libre Open Source Software
(FLOSS) development and on software development,
distributed work and teams more generally to develop a
theoretical model to explain the performance of FLOSS teams.
The proposed model is based on Hackman’s [34] model of
effectiveness of work teams, with coordination theory [52] and
collective mind [79] to extend Hackman’s model by
elaborating team practices relevant to effectiveness in software
development. We propose a set of propositions to guide
further research.

Categories and Subject Descriptors: D.2.9
[Software Engineering]: Management—programming teams

General Terms: Management

Keywords: Collective mind theory, Coordination theory,
Free and open source software, Team effectiveness.

1. INTRODUCTION
This paper presents a research approach to studying software
engineering as a team-centered work task. Our research
employs interdisciplinary approaches drawing on information
systems, distributed work and small groups research to
examine effective work practices for software development
teams, specifically those engaged in the development of
Free/Libre and Open Source software (FLOSS). It is our belief
that understanding the social and socio-technical practices of
FLOSS development teams can provide insights that are useful
for understanding software engineering as a human practice
throughout the field.

Free/Libre Open Source Software (FLOSS) is a broad term used
to embrace software developed and released under an “open
source” license allowing inspection, modification and

redistribution of the software’s source.1 There are thousands
of FLOSS projects, spanning a wide range of applications. Due
to their size, success and influence, the Linux operating
system and the Apache Web Server are the most well known,
but hundreds of others are in widespread use, including
projects on Internet infrastructure (e.g., sendmail, bind), user
applications (e.g., Mozilla, OpenOffice) and programming
languages (e.g., Perl, Python, gcc). Many are popular (indeed,
some dominate their market segment) and the code has been
found to be generally of good quality [69].

Key to our approach is the fact that most FLOSS software i s
developed by self-organizing distributed teams. Developers
contribute from around the world, meet face-to-face
infrequently if at all, and coordinate their activity primarily by
means of computer-mediated communications (CMC) [64, 77].
These teams depend on processes that span traditional
boundaries of place and ownership. The research literature on
software development and on distributed work emphasizes the
difficulties of distributed software development, but the case
of FLOSS development presents an intriguing counter-
example. What is perhaps most surprising about the FLOSS
process is that it appears to eschew traditional project
coordination mechanisms such as formal planning, system-
level design, schedules, and defined development processes
[38].

As well, FLOSS development is an important phenomena
deserving of study for itself. FLOSS is an increasingly
important commercial phenomenon involving all kinds of
software development firms, large, small and startup. Millions
of users depend on systems such as Linux and the Internet
(heavily dependent on FLOSS tools), but as Scacchi [66] notes,
“little is known about how people in these communities
coordinate software development across different settings, or
about what software processes, work practices, and
organizational contexts are necessary to their success”. A 2002
EU/NSF workshop on priorities for FLOSS research identified
the need both for learning “from open source modes of
organization and production that could perhaps be applied to
other areas” and for “a concerted effort on open source in itself,
for itself” [27].

Certainly, FLOSS is a growing component of software
engineering and the overlap between FLOSS development and
traditional in-house and proprietary development i s
increasing. It is clear that firms are seeking to leverage FLOSS
code to bolster their competitive positions but there are
opportunities to learn from the social and socio-technical
practices of FLOSS development teams to improve the
effectiveness of software engineering as a human and team
practice. We recognize that the FLOSS community comprises
teams and practices with significant differences, and that these
practices overlap with proprietary software engineering,

1 The software is generally available without charge (“free as in
beer”). Much (though not all) of it of is also “free software”,
meaning that derivative works must be made available under the
same license terms (“free as in speech”, thus “libre”). We have
chosen to use the acronym FLOSS rather than the more common
OSS to acknowledge this dual meaning.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
WISER'04, November 5, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-988-8/04/0011...$5.00.

18

especially when developers are pursuing agile software
development.

2. CURRENT RESEARCH ON FLOSS
The nascent research literature on FLOSS has addressed a
variety of questions. First, researchers have examined the
implications of FLOSS from economic and policy
perspectives. For example, some authors have examined the
implications of free software for commercial software
companies or the implications of intellectual property laws for
FLOSS [e.g., 18, 43, 50]. Second, various explanations have
been proposed for the decision by individuals to contribute to
projects without pay [e.g., 3, 23, 36, 40, 53]. These authors
have mentioned factors such as personal interest, ideological
commitment, development of skills [51] or enhancement of
reputation [53]. Finally, a few authors have investigated the
processes of FLOSS development [e.g., 64, 70], which is the
focus of this paper.

Raymond’s [64] bazaar metaphor is the most well-known
model of the FLOSS process. As with merchants in a bazaar,
FLOSS developers are said to autonomously decide how and
when to contribute to project development. By contrast,
traditional software development is likened to the building of
a cathedral, progressing slowly under the control of a master
architect. While popular, the bazaar metaphor has been broadly
criticized. According to its detractors, the bazaar metaphor
disregards important aspects of the FLOSS process, such as the
importance of project leader control, the existence of de-facto
hierarchies, the danger of information overload and burnout,
and the possibility of conflicts that cause a loss of interest in a
project or forking [4, 5].

Recent empirical work has begun to illuminate the structure
and function of FLOSS development teams. Gallivan [26]
analyzes descriptions of the FLOSS process and suggests that
teams rely on a variety of social co n trol mechanisms rather
than on trust. Several authors have described teams as having a
hierarchical or onion-like structure [9, 24, 56], as shown in
Figure 1. At the centre are the core developers, who contribute
most of the code and oversee the design and evolution of the
project. The core is usually small and exhibits a high level of

in te rac t ion , which
would be difficult to
maintain if the core
group were large.
Surrounding the core
are the co-developers.
T h e s e i n d i v i d u a l s
contribute sporadically
by r ev iewing or
modifying code or by
contributing bug fixes.
The co-developer group
can be much larger than
the core, because the
required level of
interaction is much
lower. Surrounding the
developers are the
active users: a subset of
users who use the latest
releases and contribute
bug reports or feature
requests (but not code).
Still further from the

core are the passive users. The border of the outer circle is
indistinct because the nature and variety of FLOSS
distribution channels makes it difficult or impossible to know
the exact size of the user population. As their involvement
with a project changes, individuals may move from role to
role. However, core developers must have a deep
understanding of the software and the development processes,
which poses a significant barrier to entry [22, 37]. This barrier
is particularly troubling because of the reliance of FLOSS
projects on volunteer submissions and “fresh blood” [15]. It i s
important to note that this description of a project team
(Figure 1) is based on a few case studies. While the model has
good face validity, it has not been extensively tested.

The other major stream of research examines factors for the
success of FLOSS in general (though there have been few
systematic comparison across multiple projects, e.g., [71]). The
popularity of FLOSS has been attributed to the speed of
development and the reliability, portability, and scalability of
the resulting software as well as the low cost [12, 35, 49, 62,
63, 73, 74]. In turn, the quality of the software and speed of
development have been attributed to two factors: that
developers are also users of the software and the availability of
source code.

First, FLOSS projects often originate from a personal need [55,
75], which attracts the attention of other users and inspire
them to contribute to the project. Since developers are also
users of the software, they understand the system requirements
in a deep way, eliminating the ambiguity that often
characterizes the traditional software development process:
programmers know their own needs [46]. (Of course, over-
reliance on this mode of requirements gathering may also limit
the applicability of the FLOSS model.)

Second, in FLOSS projects, the source code is open to
modification, enabling users to become co-developers by
developing fixes or enhancements. As a result, FLOSS bugs
can be fixed and features evolved quickly. Active users also
play an important role [61]. Research suggests that more than
50 percent of the time and cost of non-FLOSS software projects
is consumed by mundane work such as testing [68]. The
FLOSS process enables hundreds of people to work on these

Core developers

Co-developers

Active users

Passive users

Initiator

Release
coordinator

Figure 1. Hypothesized FLOSS development team structure.

19

parts of the process [48]. Intriguingly, it has been argued that
the distributed nature of FLOSS development may actually
lead to more robust and maintainable code. Because
developers cannot consult each other easily, it may be that
they make fewer assumptions about how their code will be
used and thus write more robust code that is highly
modularized [48].

It is noteworthy that much of the literature on FLOSS has been
written by developers and consultants directly involved in the
FLOSS community. These contributions are significant as they
point out the economic relevance of FLOSS as well as the most
striking aspects of the new development process. Yet many of
these studies seem to be animated by partisan spirit, hype or
skepticism [29]. There are only a few well-documented case
studies [e.g., 54], most of which discuss successes rather than
failures. Finally, with a few exceptions [e.g., 1, 81], the
proposed models are descriptive and based on a small number
of cases. This is both indicative of the relative novelty of the
issue and the lack of a clear theoretical framework to describe
and interpret the FLOSS phenomenon [13]. Our work is
intended to fill some of these gaps by providing a
theoretically-based model of FLOSS development practices.

3. WORK TEAM EFFECTIVENESS FOR
SOFTWARE DEVELOPMENT

We are interested in studying work practices that make FLOSS
projects more effective. To do so, we have chosen to analyze
developers as comprising a work team. Much of the literature
on FLOSS has conceptualized developers as forming
communities, which is a useful perspective for understanding
why developers choose to join or remain in a project. However,
for the purpose of this study, we view the projects as entities
that have a goal of developing a product, whose members are
interdependent in terms of tasks and roles, and who have a user
base to satisfy, in addition to having to attract and maintain

members. These aspects of FLOSS projects suggest analyzing
them as work teams. Guzzo and Dickson [33, pg. 308] defined a
work team as “made up of individuals who see themselves and
who are seen by others as a social entity, who are
interdependent because of the tasks they perform as members
of a group, who are embedded in one or more larger social
system (e.g. community, or organization), and who perform
tasks that affect others (such as customers or coworkers)”.

Given this perspective, we draw on Hackman’s [34] model of
effectiveness of work teams as a conceptual basis for our
study. While this model was initially presented as sets of
factors, these factors point to work practices that are important
for team effectiveness. Following on Crowston and Kammerer
[11], we use coordination theory [52] and collective mind [79]
to extend Hackman’s model by further elaborating team
practices relevant to effectiveness in software development. In
this section, we describe these theories, their applicability to
FLOSS development and develop a set of propositions for
future work.

3.1 Team effectiveness model
Researchers in social and organizational psychology have
studied teams and their performance for decades and have
developed a plethora of models describing and explaining
team behavior and performance. One of the most widely used
normative models was proposed by Hackman [34], shown in
Figure 2. Hackman’s [34] model is broadly similar to other
models [30], such as [44], [28] or [59]. However, Hackman’s
model seems especially fitting because of its intended purpose
of identifying factors related to team effectiveness, broadly
defined, and its inclusion of team process factors.

3.1.1 Outputs.
Hackman’s [34] model is presented in an input-process-output
framework. The output explained by the model is team

Process criteria
of effectiveness

• Level of effort brought
to bear on the team task

• Amount of knowledge
and skill applied to task
work

• Appropriateness of the
task performance
strategies used by the
team

Organizational context
A context that supports
and reinforces competent
task work, via:
• Reward system
• Education system
• Information system

Group design
A design that prompts and
reinforces competent work
on the task, via:
• Structure of the task
• Composition of the

group
• Group norms about

performance processes
Group synergy

Assistance to the group by
interacting in ways that:
• Reduce process losses
• Create synergistic

process gains

Material resources
Sufficiency of material
resources required to
accomplish the task well
and on time

Group effectiveness
• Task output acceptable

to those who receive or
review it

• Capability of members
to work together in the
future is maintained or
strengthened

• Members’ needs are
more satisfied than
frustrated by the group
experience

Figure 2. Hackman’s [34] normative model of group effectiveness.

20

effe c tiveness , which is clearly a key variable for our study: if
we cannot distinguish more and less effective teams, we cannot
identify work practices related to effectiveness. An attractive
feature of Hackman’s [34] model is that effectiveness i s
conceptualized along multiple dimensions, not just task
output . Hackman also includes the team’s continued
capability to work together and satisfaction of individual team
members’ personal needs as relevant outputs. These three
types of output correspond well to the effectiveness measures
for FLOSS projects identified by Crowston, Annabi and
Howison [10], who proposed measures including system
quality (task output), developer satisfaction (satisfaction of
individual needs), and number of developers, developer
turnover and progress of the project through stages of
development (e.g., alpha to beta to production), all indicative
of the continued ability of the team to work together. These
measures had been de-emphasised in the management-oriented
Information Systems literature (eg. Delone).

Definition: Effectiveness for FLOSS teams can be
measured by creation of quality software, continued
team performance and team member satisfaction.

3.1.2 Inputs.
Hackman’s model includes two sets of input factors,
organizational context (reward, educational and information
systems) and group design (task structure, team composition
and team norms).

The organizational context factors seem possibly important,
though FLOSS teams typically mix members from a variety of
organizational contexts, so these contextual factors may not
be under the control of the projects. As a result, we do not
include these factors in our theorizing.

Instead, we plan to focus initially on team design, which
includes three promising factors to explore: task structure ,
team composition and team norms .

• All FLOSS teams perform much the same task, namely
software development, but we anticipate seeing important
differences in the way teams structure the task. To analyze
these structures, we will use coordination theory
(discussed below).

• Based on the review above, we anticipate seeing differences
in practices related to team composition. In particular, prior
research has suggested the importance of having
contributions from members in different roles, such as core
members, co-developers and active users.

Proposition: Teams with members contributing in all
roles will be more effective.

• Finally, we anticipate differences in the development of
team norms, in particular, in the way new member s are
s o cialized into and contribute to teams (as discussed
below).

3.1.3 Process.
The intermediary factors in Hackman’s model are three process
criteria (i.e., indications that the process is working as it
should): “the level of effort brought to bear on the team task,
amount of knowledge and skill applied to task work, and
appropriateness of the task performance strategies used by
the group” [34].

Prior work has noted that distributed teams often need to
expend more on-task effort to be effective, suggesting the
importance of this variable. More effort is required for
interaction when participants are distant and unfamiliar with
each others work (Ocker and Fjermestad 2000; Seaman and
Basili 1997). The additional effort required for distributed
work often translates into delays in software release compared
to traditional face-to-face teams (Herbsleb et al. 2001; Mockus
et al. 2000).

Proposition: Teams with members contributing at a
higher level of on-task effort will be more effective.

• Amount of knowledge and skill applied also seem critical,
though possibly difficult to measure and again perhaps
not directly under the control of the project.

Proposition: Teams with members who are more
knowledgeable and skilled will be more effective.

• We will use coordination theory to analyze task
performance strategies, as discussed below.

3.1.4 Moderating factors.
Finally, Hackman proposes factors that moderate the
relationship between process and output, namely material
resources, and between inputs and process, namely team
synergy.

Material resources are things that the team requires in order
to carry-out their task, for example computers, compliers and
team collaboration systems, such as source code management
tools (e.g. CVS) or more fully fledged collaborative
environments, such as Sourceforge or Collab.net. However,
since all of the groups we are studying seem to have access to
the same sufficient resources this is not an aspect on which we
intend to focus.

The review of software development presented above makes
clear that practices for the development and maintenance of
shared mental models will play an important role in enabling
team synergy. We will apply collective mind [79] theory to
conceptualize these models, as discussed below.

In the remainder of this section, we will discuss the two
supporting theories we will use to extend Hackman’s model,
namely coordination theory and collective mind theory.

3.2 Coordination theory
We use coordination theory to analyze the structure of the
tasks and coordination mechanisms used within teams. Many
software process researchers have stressed the importance of
coordination for software development [e.g., 16, 46]. For
example, Kuwabara [47] states that, “coordination is a crucial
element sustaining collective effort giving the Linux its
integrity that unfolds the seemingly chaotic yet infinitely
creative process of creation”. The knowledge based-view of the
firm [31] also emphasizes coordination mechanisms as
important for integrating the knowledge of individuals into an
organization’s products, rules and routines.

Coordination theory provides a theoretical framework for
analyzing coordination in processes. We use the model
presented by Malone and Crowston [52], who define
coordination as “managing dependencies.” They analyzed
processes in terms of actors performing interdependent tasks .
These tasks might also require or create resources of various
types. For example, in software development, developers

21

might require bug reports into order to create patches for the
bugs. In this view, actors in organizations face coordination
problems arising from inte r dependencies that constrain how
tasks can be performed. Interdependencies can be between
tasks, between tasks and the resources they need or between
the resources used. Interdependencies may be inherent in the
structure of the problem (e.g., components of a system may
interact with each other, constraining how a particular
component is designed [67]) or they may result from the
assignment of tasks to actors and resources (e.g., two engineers
working on the same component face constraints on the
changes they can propose without interfering with each other).
One implication of this view is that an important management
strategy for software development work is to minimize
dependencies, e.g., by creating software with modules that can
be worked on independently.

Proposition: Teams with task structures and practices
that minimize dependencies will be more effective.

To overcome the coordination problems created by
dependencies, actors must perform additional work, which
Malone and Crowston [52] called coordination mechanisms , or
what Faraj and Xiao [21] call coordination practices . For
example, if particular expertise is necessary to fix a bug (a
task-actor dependency), then a developer with that expertise
must be identified and the bug routed to him or her to work on.
For any given dependency, there may be a range of available
mechanisms, so project teams are expected to differ in their
choice of mechanisms. It is unlikely that there is a single best
set of mechanisms, but rather the fit of the selected
mechanisms with other team practices is expected to have
implications for effectiveness.

Proposition: Teams with coordination practices to
manage dependencies will be more effective.

3.3 Collective mind
The second theory we apply is collective mind, a theory of the
functioning of shared mental models. Shared mental models,
as defined by Cannon-Bowers & Salas [6], “are knowledge
structures held by members of a group that enable them to
form accurate explanations and expectations for the task, and
in turn, to coordinate their actions and adapt their behavior to
demands of the task and other group members” (p. 228).
Without shared mental models, individuals from different
teams or backgrounds may interpret tasks differently, making
collaboration and communication difficult [19] and
diminishing individual contributions to the collective goal.
Shared mental models are expected to lead to better team
performance in general [6] and for software development in
particular. Curtis, et al. [17], note that, “a fundamental problem
in building large systems is the development of a common
understanding of the requirements and design across the
project group” (p. 52). They go on to say that, “transcripts of
group meetings reveal the large amounts of time designers
spend trying to develop a shared model of the design” (p. 52).

Following on work by Crowston and Kammerer [11], we intend
to apply Weick and Robert’s [79] collective mind theory to
analyze this issue. We have chosen this theory for several
reasons. First, previous conceptions of group mind have been
controversial because they seemed to imply the existence of
some super-individual entity [76]. By contrast, collective
mind is described as an individual’s “disposition to heed,”
hence an emphasis on “heedful” behaviors. If each member of a

team has the desire and means to act in ways that further the
goals and needs of the team (i.e., “heedfully”), then that team
will exhibit behavior that might be described as collectively
intelligent, even though it is the individuals who are
intelligent, not the team per se. Second, Weick and Roberts
[79] suggest that collective mind is beneficial for situations
where there is need for high reliability, non-routine work, and
interactive complexity (the combination of complex
interactions with a high degree of coupling), all characteristics
of much of software development. Finally, the elements of the
theory fit cleanly into Hackman’s model, as we now discuss.

Weick and Roberts [79] identify three overlapping individual
behaviours that epitomize collective mind: 1) contribution (an
individual member of a team contributes to the team outcome,
one of Hackman’s process factors), 2) representation
(individuals build personal mental models of the team and its
task, which we view as an important factor for Hackman’s team
synergy) and 3) subordination (an individual puts the team’s
goals ahead of individual goals, a team norm that corresponds
to Hackman’s team design input). Although conceptualized
separately, these three concepts overlap and reinforce one
another to some degree. For example, it is difficult to imagine
heedful contributions from even highly talented and
motivated individuals with weak representations of the team’s
needs and structure. While these actions go on in any group
setting, the issue for collective mind is how carefully,
appropriately and intelligently they are done. To the extent
they are, the team will display collective mind.

Proposition: Teams with more highly developed shared
mental models will be more effective.

Proposition: Teams in which members subordinate
personal goals to team goals will be more effective.

Proposition: Teams with higher levels of socialization,
conversation and narration will display more highly
developed shared mental models.

4. PROPOSED DATA COLLECTION
In this section, we briefly describe the data we plan to collect
to test the propositions presented in the previous section. As
mentioned earlier, we are particularly interested in the
practices adopted by effective development teams. Practices
are often hard to study because they are taken for granted, and
so escape intense observation. They go on all around us, but
without notice unless something goes wrong. For on-line
teams though, observation is facilitated because much of the
team’s interactions are funneled through a CMC system, and
so structured and captured, as are the results of their work.
Retrospective comparisons can be easily made by comparing
data captured at different times, unbiased by the possibly
selective recollections of informants. Our problem then is
ensuring that these interactions present a complete picture of
the team and then making sense of the vast pool of data created
in the course of developers’ interactions to answer interesting
questions about their practices. To explore the concepts
identified in the conceptual development section of this
proposal, we will collect a wide range of data: project
demographics, developer demographic data, interaction logs,
code, project plans and procedures, as well as developer
interviews, observation and participant observation. In the

22

remainder of this section, we will briefly review each source.
Table 1 shows the mapping from each data source to analysis.

Project demographics. We plan to collect basic descriptive
data about each project, such as its topic, intended use
environment, programming language, etc. Often these data are
self-reported by the developers to guide potential users (e.g.,
on SourceForge or FreshMeat, http://freshmeat.net/); in other
cases, they can be inferred. We will also collect data indicative
of the effectiveness of the project team [71], such as its level of
activity, number of downloads as a proxy for use and
development status, as well as any user ratings, such as
FreshMeat user ratings. Again, SourceForge explicitly tracks
these figures, but for other projects they may have to be
inferred.

Developer demographic data. We will collect the list of
developers for each project and their assigned roles, if any,
plus any demographic information available. SourceForge
collects skills ratings for a few developers; since only a
minority of developers are rated at all, these are mostly
interesting as a reflection of how well known a developer is.
We also will collect developer’s PGP or GnuPG key to examine
the web of trust as a reflection of the developer’s social
network [60] (see http://www.chaosreigns.com/code/sig2dot/
for examples).

Developer interactions logs. The most voluminous source of
data will be collected from archives of CMC tools used to
support the team’s interactions for FLOSS development work
[39, 48]. These data are useful because they are unobtrusive
measures of the team’s behaviours [78]. Mailing list archives
will be examined, as email is a primary tool used to support

team coordination [14]. Such archives contain a huge amount
of information: e.g., the Linux kernel list receives 5-7000
messages per month. From mailing lists, we will extract the
date, sender and any individual recipient’ names, the sender of
the original message, in the case of a response, and text of each
message. From bug tracking systems (e.g., Apache’s GNATS,
Linux kernel’s Jitterbug, Mozilla’s Bugzilla as well as
Sourceforge’s Tracker) we will extract data about bug
typologies, who submitted bugs, who fixed them and the steps
in the bug fixing process. We will examine features request
archives and logs from other interaction tools, such as chat
sessions.

Source code. A major advantage of studying open source
software is that we have access to the source code itself. Many
projects use a source code control system such as CVS, which
stores intermediate versions of the source and the changes
made. From these logs, we will be able to extract data on the
kinds of contributions to understand the software structure
and the date and name of the contributors to understand the
role of individual developers [25, 32, 54]. Raw code poses
numerous challenges to interpretation [72]. For example, not
all projects assign authorship in the CVS tree. Again, we
intend to leverage our analysis with work being carried out by
other researchers [e.g., 42].

Project plans and procedures. Many projects have stated
release plans and proposed changes. Such data are often
available on the project’s documentation web page or in a
“status” file used to keep track of the agenda and working
plans [15]. For example, Scacchi [66] examined requirements
documentation for FLOSS projects. We will also examine any
explicitly stated norms, procedures or rules for taking part in a
project, such as the process to submit and handle bugs,
patches or feature request. Such procedures are often reported
on the project’s web page (e.g., http://dev.apache.org
/guidelines.html).

Developer attitudes and opinions. While the data sources
listed above will provide an extensive pool of data, they are all
indirect. Interviews and surveys are important to get rich, first-
hand data about developers’ perceptions and interpretations.
We plan to conduct interviews with key informants in the
selected projects. Interviews will be conducted mainly by e-
mail, but we also plan to attend one or two FLOSS conferences
each year (e.g., the O’Reilly Open Source Convention or
ApacheCon) to interview FLOSS developers face-to-face. As
part of the interviews protocol, we will employ the critical
incident technique, in which developers are asked to describe
personally experienced specific incidents which had an
important effect on the final outcome [8]. We will also explore
the developer’s initial experiences of participation in FLOSS,
the social structure and norms of the team, processes of
knowledge exchange and socialization (especially the role of
observation, which leaves no traces in the interaction logs),
knowledge of other members’ participation [57, 80] and
impressions of project effectiveness. As well, interviews will
be used to verify that the archives of interaction data give a
fair and reasonably complete record of day-to-day interactions.
In later phases of the project, a Web survey will be used to
elicit attitudes and opinions from a large sample of
developers.

Observation. We have found from an initial pilot study that
developers interact extensively at conferences. Indeed, Nardi
and Whittaker [58] note the importance of face-to-face
interactions for sustaining social relations in distributed

Table 1. Summary of concepts in proposed model and
corresponding phenomena.

Concepts Specific phenomena

Code quality
Project usage
User satisfaction
Project recognition
Continued system development
Group membership turnover

Team effectiveness

Developer satisfaction
Developer recognition
Task structure
Process activities and dependencies
Actors and roles
Composition of team
Experience
Cross-membership

Team design

Team norms about performance
Socialization of new members
Number of developers
Level of effort of developers (quantity
and quality)

Process criteria

Appropriate coordination mechanisms
Team communication patterns

Team synergy Shared mental models (representation)
Socialization, narration, collaboration

23

teams. The FreeBSD developer Poul-Henning Kamp has also
stated that phone calls can be occasionally used to solve
complex problems [20]. These interactions are a small fraction
of the total, but they may still be crucial to understanding the
team’s practices. We plan to use attendance at developer
conferences as an opportunity to observe and document the
role of face-to-face interaction for FLOSS teams.

We also intend to carry out a virtual ethnographic study of
developer socialization and interaction. One student involved
with the project has already virtually joined several
development teams (with the permission of the project leaders
and the knowledge of other members) and is currently
participating in their normal activities while observing and
recording these activities. In this way, we will study and learn
first hand the socialization and coordination practices of these
teams. We will track these teams through the various stages of
development status, from planning through production/stable
stage, observing how new members join the teams and how
they contribute to the team output.

5. CONCLUSION
In this paper, we presented a conceptual model and a set of
propositions concerning work practices within distributed
FLOSS development teams. Developing a theoretical
framework consolidating a number of theories to understand
the dynamics within a distributed team is itself a contribution
to the study of distributed teams and learning within
organization literature [65].

Distributed work teams potentially provide several benefits
but the separation between members of distributed teams
creates difficulties in coordination, collaboration and
learning, which may ultimately result in a failure of the team to
be effective [2, 7, 41, 45]. Applying techniques from on
information systems, distributed work and small groups
research to software engineering will, we hope, allow us to
better understand software engineering as a human-centered
activity. Understanding the work practices of teams of software
engineers working in a distributed environment is important
to improve the effectiveness of distributed teams and of the
traditional and non-traditional organizations within which
they exist. The results of our study could serve as guidelines
(in team governance, task coordination, communication
practices, mentoring, etc.) to improve performance and foster
innovation.

ABOUT THE AUTHORS
Our research team is based at the School of Information
Studies at Syracuse University (Kevin Crowston, James
Howison and Chengetai Masango) and the Information School
at the University of Washington (Hala Annabi). Information
Schools are interdisciplinary faculties researching information
policy, information behavior, information management,
information systems, information technology and information
services.

This work was partially supported by NSF Grants 03-41475
and 04–14468.

REFERENCES
[1] Behlendorf, B. Open source as a business strategy. in Di

Bona, C., Ockman, S. and Stone, M. eds. Open sources:
Voices from the open source revolution, O’Reilly, San
Francisco, 1999.

[2] Bélanger, F. and Collins, R. Distributed Work
Arrangements: A Research Framework. The Information
Society, 14 (2). 137–152.

[3] Bessen, J. Open Source Software: Free Provision of
Complex Public Goods, Research on Innovation, 2002, 24
pages.

[4] Bezroukov, N. Open source software development as a
special type of academic research (critique of vulgar
raymondism). First Monday, 4 (10).

[5] Bezroukov, N. A second look at the Cathedral and the
Bazaar. First Monday, 4 (12).

[6] Cannon-Bowers, J.A. and Salas, E. Reflections on shared
cognition. Journal of Organizational Behavior, 22.
195–202.

[7] Carmel, E. and Agarwal, R. Tactical approaches for
alleviating distance in global software development. IEEE
Software (March/April). 22–29.

[8] Chell, E. Critical incident technique. in Symon, G. ed.
Qualitative methods and analysis in organizational
research: A practical guide, Sage, London, 1998, 51–72.

[9] Cox, A. Cathedrals, Bazaars and the Town Council, 1998.
Available from: http://slashdot.org
/features/98/10/13/1423253.shtml. Accessed 22 March,
2004.

[10] Crowston, K., Annabi, H. and Howison, J. Defining Open
Source Software project success. in Proceedings of the
24th International Conference on Information Systems
(ICIS 2003), Seattle, WA, 2003.

[11] Crowston, K. and Kammerer, E. Coordination and
collective mind in software requirements development.
IBM Systems Journal, 37 (2). 227–245.

[12] Crowston, K. and Scozzi, B. Open source software projects
as virtual organizations: Competency rallying for
software development. IEE Proceedings Software, 149 (1).
3–17.

[13] Cubranic, D., Open-source software development. in 2nd
Workshop on Software Engineering over the Internet,
(Los Angeles, 1999).

[14] Cubranic, D. The ramp-up challenge in open-source
software projects, Department of Computer Science,
University of British Columbia, Vancouver, BC, Canada,
n.d.

[15] Cubranic, D. and Booth, K.S., Coordinating Open Source
Software development. in Proceedings of the 7th IEEE
Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, (1999).

[16] Curtis, B., Krasner, H. and Iscoe, N. A field study of the
software design process for large systems. CACM, 31 (11).
1268–1287.

[17] Curtis, B., Walz, D. and Elam, J.J. Studying the process of
software design teams. in Proceedings of the 5th
International Software Process Workshop On Experience
With Software Process Models, Kennebunkport, Maine,
United States, 1990, 52–53.

[18] Di Bona, C., Ockman, S. and Stone, M. (eds.). Open
Sources: Voices from the Open Source Revolution.
O'Reilly & Associates, Sebastopol, CA, 1999.

[19] Dougherty, D. Interpretive barriers to successful product
innovation in large firms. Organization Science, 3 (2).
179–202.

[20] Edwards, K., Epistemic communities, situated learning
and Open Source Software development. in Epistemic
Cultures and the Practice of Interdisciplinarity
Workshop, (NTNU, Trondheim, 2001).

24

[21] Faraj, S. and Xiao, Y., Coordination in fast response
organization. in Academy of Management Conference,
(Denver, CO, 2002).

[22] Fielding, R.T. The Apache Group: A case study of Internet
collaboration and virtual communities, 1997. Available
from: http://www.ics.uci.edu/fielding/talks/ssapache
/overview.htm.

[23] Franck, E. and Jungwirth, C. Reconciling investors and
donators: The governance structure of open source,
Lehrstuhl für Unternehmensführung und -politik,
Universität Zürich, 2002.

[24] Gacek, C., Lawrie, T. and Arief, B. The many meanings of
Open Source, Centre for Software Reliability, Department
of Computing Science, University of Newcastle, Newcastle
upon Tyne, United Kingdom, n.d.

[25] Gall, H., Hajek, K. and Jazayeri, M. Detection of Logical
Coupling Based on Product Release History. in
Proceedings of the International Conference on Software
Maintenance (ICSM ’98), 1998.

[26] Gallivan, M.J. Striking a balance between trust and
control in a virtual organization: A content analysis of
open source software case studies. Information Systems
Journal, 11 (4). 277–304.

[27] Ghosh, R.A. Free/Libre and Open Source Software: Survey
and Study. Report of the FLOSS Workshop on Advancing
the Research Agenda on Free / Open Source Software,
2002. Available from: http://www.infonomics.nl/FLOSS
/report/workshopreport.htm.

[28] Gladstein, D.L. Groups in context: A model of task group
effectiveness. Administrative Science Quarterly, 29 (4).
499–517.

[29] Glass, R.L. Of open source, Linux, …and hype. IEEE
Software, 16 (1). 126–128.

[30] Goodman, P.S., Ravlin, E.C. and Argote, L. Current
thinking about groups: Setting the stage for new ideas. in
Goodman, P.S. and Associates eds. Designing Effective
Work Groups, Jossey-Bass, San Francisco, CA, 1986,
1–33.

[31] Grant, R.M. Prospering in dynamically-competitive
environments: Organizational capability as knowledge
integration. Organizational Science, 7 (4). 375–387.

[32] Graves, T.L. Inferring Change Effort from Configuration
Management Databases, 1998.

[33] Guzzo, R.A. and Dickson, M.W. Teams in organizations:
Recent research on performance effectiveness. Annual
Review of Psychology, 47. 307–338.

[34] Hackman, J.R. The design of work teams. in Lorsch, J.W.
ed. The Handbook of Organizational Behavior, Prentice-
Hall, Englewood Cliffs, NJ, 1986, 315–342.

[35] Hallen, J., Hammarqvist, A., Juhlin, F. and Chrigstrom, A.
Linux in the workplace. IEEE Software, 16 (1). 52–57.

[36] Hann, I.-H., Roberts, J., Slaughter, S. and Fielding, R.
Economic incentives for participating in open source
software projects. in Proceedings of the Twenty-Third
International Conference on Information Systems, 2002,
365–372.

[37] Hecker, F. Mozilla at one: A look back and ahead, 1999.
Available from: http://www.mozilla.org/mozilla-at-
one.html.

[38] Herbsleb, J.D. and Grinter, R.E. Splitting the organization
and integrating the code: Conway’s law revisited. in
Proceedings of the International Conference on Software
Engineering (ICSE ‘99), ACM, Los Angeles, CA, 1999,
85–95.

[39] Herbsleb, J.D., Mockus, A., Finholt, T.A. and Grinter, R.E.
An empirical study of global software development:
Distance and speed. in Proceedings of the International
Conference on Software Engineering (ICSE 2001),
Toronto, Canada, 2001, 81–90.

[40] Hertel, G., Niedner, S. and Herrmann, S. Motivation of
Software Developers in Open Source Projects: An Internet-
based Survey of Contributors to the Linux Kernel,
University of Kiel, Kiel, Germany, n.d., 39 pages.

[41] Jarvenpaa, S.L. and Leidner, D.E. Communication and trust
in global virtual teams. Organization Science, 10 (6).
791–815.

[42] Koch, S. and Schneider, G. Effort, co-operation and co-
ordination in an open source software project: GNOME.
Information Systems Journal, 12 (1). 27–42.

[43] Kogut, B. and Metiu, A. Open-source software
development and distributed innovation. Oxford Review
of Economic Policy, 17 (2). 248–264.

[44] Kolodny, H. and Kiggundu, M. Towards the development
of a sociotechnical systems model in Woodlands
Mechanical Harvesting. Human Relations, 33. 623–645.

[45] Kraut, R.E., Steinfield, C., Chan, A.P., Butler, B. and Hoag,
A. Coordination and virtualization: The role of electronic
networks and personal relationships. Organization
Science, 10 (6). 722–740.

[46] Kraut, R.E. and Streeter, L.A. Coordination in software
development. Communications of the ACM, 38 (3). 69–81.

[47] Kuwabara, K. Linux: A bazaar at the edge of chaos. First
Monday, 5 (3).

[48] Lee, G.K. and Cole, R.E. The Linux Kernel Development As
A Model of Open Source Knowledge Creation, Haas
School of Business, University of California, Berkeley,
Berkeley, CA, 2000.

[49] Leibovitch, E. The business case for Linux. IEEE Software,
16 (1). 40–44.

[50] Lerner, J. and Tirole, J. The open source movement: Key
research questions. European Economic Review, 45.
819–826.

[51] Ljungberg, J. Open Source Movements as a Model for
Organizing. European Journal of Information Systems, 9
(4).

[52] Malone, T.W. and Crowston, K. The interdisciplinary
study of coordination. Computing Surveys, 26 (1).
87–119.

[53] Markus, M.L., Manville, B. and Agres, E.C. What makes a
virtual organization work? Sloan Management Review, 42
(1). 13–26.

[54] Mockus, A., Fielding, R.T. and Herbsleb, J.D. Two Case
Studies Of Open Source Software Development: Apache
And Mozilla. ACM Transactions on Software
Engineering and Methodology, 11 (3). 309–346.

[55] Moody, G. Rebel code—Inside Linux and the open source
movement. Perseus Publishing, Cambridge, MA, 2001.

[56] Moon, J.Y. and Sproull, L. Essence of distributed work:
The case of Linux kernel. First Monday, 5 (11).

[57] Mortensen, M. and Hinds, P. Fuzzy teams: Boundary
disagreement in distributed and collocated teams. in
Hinds, P. and Kiesler, S. eds. Distributed Work, MIT Press,
Cambridge, MA, 2002, 284–308.

[58] Nardi, B.A. and Whittaker, S. The place of face-to-face
communication in distributed work. in Hinds, P. and
Kiesler, S. eds. Distributed Work, MIT Press, Cambridge,
MA, 2002, 83–110.

[59] Nieva, V.F., Fleshman, E.A. and Rieck, A. Team
Dimensions: Their Identity, Their Measurement, and Their

25

Relationships, Advanced Research Resources
Organizations, Washington, DC, 1978.

[60] O’Mahony, S. and Ferraro, F., Managing the Boundary of
an ‘Open’ Project. in Santa Fe Institute (SFI) Workshop
on The Network Construction of Markets, (2003).

[61] O’Reilly, T. Lessons from open source software
development. Communications of the ACM, 42 (4). 33–37.

[62] Pfaff, B. Society and open source: Why open source
software is better for society than proprietary closed
source software, 1998. Available from:
http://www.msu.edu/user/pfaffben/writings/anp/oss-is-
better.html.

[63] Prasad, G.C. A hard look at Linux’s claimed strengths…,
n.d. Available from: http://www.osopinion.com
/Opinions/GaneshCPrasad/GaneshCPrasad2-2.html.

[64] Raymond, E.S. The cathedral and the bazaar. First Monday,
3 (3).

[65] Robey, D., Khoo, H.M. and Powers, C. Situated-learning in
cross-functional virtual teams. IEEE Transactions on
Professional Communication (Feb/Mar). 51–66.

[66] Scacchi, W. Understanding the requirements for
developing Open Source Software systems. IEE
Proceedings Software, 149 (1). 24–39.

[67] Schach, S.R., Jin, B., Wright, D.R., Heller, G.Z. and Offutt,
A.J. Maintainability of the Linux Kernel, 2003. Available
from: http://www.vuse.vanderbilt.edu
/%7Esrs/preprints/linux.longitudinal.preprint.pdf.
Accessed 14 Dec, 2003.

[68] Shepard, T., Lamb, M. and Kelly, D. More testing should
be taught. Communication of the ACM, 44 (6). 103–108.

[69] Stamelos, I., Angelis, L., Oikonomou, A. and Bleris, G.L.
Code quality analysis in open source software
development. Information Systems Journal, 12 (1).
43–60.

[70] Stewart, K.J. and Ammeter, T. An exploratory study of
factors influencing the level of vitality and popularity of
open source projects. in Proceedings of the Twenty-Third
International Conference on Information Systems, 2002,
853–857.

[71] Stewart, K.J. and Gosain, S., Impacts of ideology, trust,
and communication on effectivness in open source
software development teams. in Twenty-Second
International Conference on Information Systems, (New
Orleans, LA, 2001), 507–512.

[72] Tuomi, I. Evolution of the Linux Credits File:
Methodological Challenges and Reference Data for Open
Source Research, 2002. Available from:
http://www.jrc.es/~tuomiil/articles/EvolutionOfTheLinux
CreditsFile.pdf. Accessed 15 November, 2002.

[73] Valloppillil, V. Halloween I: Open Source Software, 1998.
Available from: http://www.opensource.org/halloween
/halloween1.html.

[74] Valloppillil, V. and Cohen, J. Halloween II: Linux OS
Competitive Analysis, 1998. Available from:
http://www.opensource.org/halloween/halloween2.html.

[75] Vixie, P. Software engineering. in Di Bona, C., Ockman, S.
and Stone, M. eds. Open sources: Voices from the open
source revolution, O’Reilly, San Francisco, 1999.

[76] Walsh, J.P. Managerial and organizational cognition:
Notes from a trip down memory lane. Organization
Science, 6 (3). 280–321.

[77] Wayner, P. Free For All. HarperCollins, New York, 2000.
[78] Webb, E. and Weick, K.E. Unobtrusive measures in

organizational theory: A reminder. Administrative Science
Quarterly, 24 (4). 650–659.

[79] Weick, K.E. and Roberts, K. Collective mind in
organizations: Heedful interrelating on flight decks.
Administrative Science Quarterly, 38 (3). 357–381.

[80] Weisband, S. Maintaining awareness in distributed team
collaboration: Implications for leadership and
performance. in Hinds, P. and Kiesler, S. eds. Distributed
Work, MIT Press, Cambridge, MA, 2002, 311–333.

[81] Young, R. How Red Hat Software stumbled across a new
economy model and helped improve an industry. in Di
Bona, C., Ockman, S. and Stone, M. eds. Open sources:
voices from the open source revolution, O’Reilly, San
Francisco, 1999.

26

