A Coordination Theory Approach to Organizational Process Design

Kevin Crowston

Organization Science, Volume 8, Issue 2 (Mar. - Apr., 1997), 157-175.

Stable URL:
http://links jstor.org/sici?sici=1047-7039%28199703%2F199704%298%3A2%3C157%3AACTATO%3E2.0.CO%3B2-1

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Organization Science 18 published by INFORMS. Please contact the publisher for further permissions regarding the
use of this work. Publisher contact information may be obtained at http://www jstor.org/journals/informs.html.

Organization Science
©1997 INFORMS

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2002 JSTOR

http://www.jstor.org/
Sun Aug 4 16:18:51 2002

A Coordination Theory Approach
to Organizational Process Design

Kevin Crowston
Syracuse University, School of Information Studies, Syracuse, New York 13244-4100

Design of new organizational forms can begin with an analysis of existing organizational
processes and identification of ways to change these process arrangements. Kevin Crowston
applies coordination theory to show how task processes can be decomposed, documented, and
altered to create new forms of organizing work. Crowston’s research demonstrates the potential of
coordination theory in the study of new organizational forms and process redesign.

Gerardine DeSanctis

Abstract

An important practical problem for many managers is finding
alternative processes for performing a desired task, for exam-
ple, one that is more efficient, cheaper, or that is automated
or enhanced by the use of information technology. Improving
processes also poses theoretical challenges. Coordination
theory provides an approach to the study of processes. In this
view, the design of a process depends on the coordination
mechanisms chosen to manage dependencies among tasks
and resources involved in the process.

In this paper, I use coordination theory to analyze the
software change process of a large mini-computer manufac-
turer. Mechanisms analyzed include those for task assign-
ment, resource sharing, and managing dependencies between
modules of source code. For each, I suggest alternative
mechanisms and thus alternative designs for the process. The
organization assigned problem reports to engineers based on
the module that appeared to be in error, since engineers only
worked on particular modules. Alternative task assignment
mechanisms include assignment to engineers based on work-
load or market-like bids. Modules of source code were not
shared, but rather “owned” by one engineer, thus reducing
the need for coordination. An alternative resource sharing
mechanism would be needed to manage source code if multi-
ple engineers could work on the same modules. Finally,
engineers managed dependencies between modules infor-
mally, relying on their personal knowledge of which other
engineers used their code; alternatives include formally
defining the interfaces between modules and tracking their
users.

Software bug fixing provides a microcosm of coordination
problems and solutions. Similar coordination problems arise

1047-7039 /97 /0802 /0157 /$05.00
Copyright © 1997. Institute for Operations Research
and the Management Sciences

in most processes and are managed by a similar range of
mechanisms. For example, diagnosing bug reports and assign-
ing them to engineers may have interesting parallels to diag-
nosing patients and assigning them to specialists.

While the case presented does not formally test coordina-
tion theory, it does illustrate the potential of coordination
theory for exploring the space of organizational processes.
Future work includes developing more rigorous techniques
for such analyses, applying the techniques to a broader range
of processes, identifying additional coordination problems
and mechanisms and developing tools for collecting and
comparing processes and automatically suggesting potential
alternatives.

(Organization Theory; Coordination Theory; Organiza-
tional Processes; Process Redesign; Process Reengineer-

ing)

1. Introduction

Describing and categorizing organizational forms
remains a central problem in organization theory
(McKelvey 1982, Rich 1992, Sanchez 1993). Unfortu-
nately, defining organizational form poses numerous
difficulties. Mohr (1982) describes organizational struc-
ture as “multidimensional—too inclusive to have con-
stant meaning and therefore to serve as a good theoret-
ical construct.” McKelvey and Aldrich (1983) point out
that most large organizations are actually mixtures of
different forms. In other words, an entire organization

OraganizaTioN ScieNce/Vol. 8, No. 2, March-April 1997 157

KEVIN CROWSTON Organizational Process Design

is too aggregate a level of analysis for meaningful

comparison of forms.

To narrow the study of organizational forms, some
researchers have suggested focusing on how particular
tasks are performed, using the process as the focus of
analysis (Mohr 1982, Abbott 1992). For example, to
understand how General Motors and Ford are alike or
different, researchers might compare their automobile
design processes or even more specific subprocesses.
The problem thus becomes not what structural form an
organization has, but what process it uses to accom-
plish a particular task.

Given this perspective, an important practical prob-
lem is to identify alternative processes that would also
be suitable for performing a desired task. As compa-
nies scramble to adapt to increasingly frequent envi-
ronmental changes, this question has become even
more pressing. For example, although managers may
realize that the survival of their company depends on
reducing time-to-market and improving quality, they
may find it difficult to translate these goals into con-
crete organizational changes, e.g., as part of a business
process redesign effort (Davenport and Short 1990,
Hammer 1990, Harrison and Pratt 1993). Other man-
agers may be concerned with making effective use of
information technology (IT), electronic media in partic-
ular, and wonder what kinds of organizational pro-
cesses become possible as the historic constraints on
communications and information processing are re-
laxed. Underlying both these questions is the central
theoretical issue: how can we represent organizational
processes in a way that allows us to compare and
contrast them or to design new ones (Malone et al.
1993)?

Consider the software problem (bug) fixing process,
a process that I studied and which I will use as a source
for examples in this paper. Customers having problems
with a piece of software report the problems to its
developers, who (they hope) eventually provide some
kind of solution. The company I studied, the developer
of a mini-computer operating system, has an elaborate
process to receive problem reports, filter out duplicates
of known problems, identify for novel problems which
modules of the system are apparently at fault and
route the reports to the software engineers responsible
for those modules. Along the way, an engineer might
develop a workaround (i.e., a way to avoid the prob-
lem); the responsible software engineer might develop
a patch (i.e., a change to the code of part of the
system) to fix it. The patch is then sent to other groups
who test it, integrate it into the total system and,
eventually, send it to the customers who originally had

158

the problem. (A more detailed description of this pro-
cess appears in §3.) This analysis raises several ques-
tions. Why is the process structured this way, with
finely divided responsibility for different parts of the
process? More simply, how else could the company do
this?

In the remainder of this paper, I present one ap-
proach to answering these questions. In the next sec-
tion I briefly review coordination theory and show how
it can guide the analysis and redesign of a process. The
bulk of the paper presents a detailed example. Section
3 describes the case site—the software development
division of a minicomputer manufacturer—and the
data collection method. Section 4 discusses the depen-
dencies and coordination mechanisms identified in the
case, and suggests possible alternative mechanisms and
therefore processes. The paper concludes by briefly
evaluating the coordination theory approach and dis-
cussing its application in other settings.

2. A Coordination Theory Approach

to Organizational Processes

In this paper, I use coordination theory as one ap-
proach to analyzing and redesigning processes. If we
examine many companies, we will observe a wide vari-
ety of approaches to the software bug fixing process.
For example, in other companies (and other parts of
the company I studied), when a problem report arrives,
it is simply assigned to the next free engineer. If we
examine many processes, we will see a similar range of
possibilities. Individuals (or firms) may be either gener-
alists who perform a wide variety of tasks, or specialists
who perform only a few. Activities may be assigned to
actors within a single organization, as with bug fixing;
other assignments may take place in a market, as with
auditing, consulting and an increasingly wide variety of
services; and finally, assignments may be given to oth-
ers in a network of corporations (Powell 1990).

Despite this diversity, when we systematically com-
pare processes, patterns emerge. Organizations that
perform the same task often perform essentially the
same basic activities. For example, organizations that
fix software bugs must all diagnose the bug, write code
for a fix, and integrate the change with the rest of the
system. Looking more broadly, many engineering
change processes have activities similar to those for
software.

While these general activities are often the same, the
processes differ in important details: how these large
abstract tasks are decomposed into activities, who per-

OracanizaTION SciENcE/Vol. 8, No. 2, March-April 1997

KEVIN CROWSTON Organizational Process Design

forms particular activities, and how they are assigned.
In other words, processes differ in how they are coordi-
nated. However, even with coordination there are com-
mon patterns: similar problems arise and are managed
similarly. For example, nearly every organization must
assign activities to specific actors and task assignment
mechanisms can be grouped into a few broadly similar
categories. Such mechanisms are the subject matter of
coordination theory.

To analyze these patterns of coordination, I use the
framework developed by Malone and Crowston (1994),
who define coordination as “managing dependencies
between activities” (p. 90). They define coordination
theory as the still-developing body of “theories about
how coordination can occur in diverse kinds of systems”
(p. 87). Malone and Crowston analyze group action in
terms of actors performing interdependent activities to
achieve goals. These activities may also require or
create resources of various types.

For example, in the case of software bug fixing,
activities include diagnosing the bug, writing code for a
fix, and integrating it with the rest of the system, as
mentioned above. Actors include the customers and
various employees of the software company. In some
cases, it may be useful to analyze a group of individuals
as a collective actor (Abell 1987). For example, to
simplify the analysis of coordination within a particular
subunit, the other subunits with which it interacts
might all be represented as collective actors. The goal
of software bug fixing appears to be eliminating prob-
lems in the system, but alternative goals—such as
appearing responsive to customer requests—could
also be analyzed. In taking this approach, we adopt
Dennett’s (1987) intentional stance: because there is no
completely reliable way to determine someone’s goals
(or if indeed they have goals at all), we, as observers,
can only impute goals to the actors and analyze how
well the process accomplishes these goals. Finally, re-
sources include the problem reports, information about
known problems, computer time, software patches,
source code, and so on.

According to coordination theory, actors in organiza-
tions face coordination problems that arise from depen-
dencies that constrain how tasks can be performed.
These dependencies may be inherent in the structure
of the problem (e.g., components of a system may
interact with each other, constraining the kinds of
changes that can be made to a single component with-
out interfering with the functioning of others) or they
may result from decomposition of the goal into activi-
ties or the assignment of activities to actors and re-
sources (e.g., two engineers working on the same com-

ORrGanizaTiON Science/Vol. 8, No. 2, March-April 1997

ponent face constraints on the kind of changes they
can make without interfering with each other).

To overcome these coordination problems, actors
must perform additional activities, which compose what
Malone and Crowston call coordination mechanisms.
For example, a software engineer planning to change
one module in a computer system must first check if
the changes will affect other modules and then arrange
for any necessary changes to modules that will be
affected; two engineers working on the same module
each must be careful not to overwrite the other’s
changes. Coordination mechanisms may be specific to
a particular setting, such as a code management system
to control changes to software, or general, such as
hierarchical or market mechanisms to manage assign-
ment of activities to actors or other resources.

The first key claim of coordination theory is that
dependencies and the mechanisms for managing them
are general, that is, a particular dependency and a
mechanism to manage it will be found in a variety of
organizational settings. For example, a common coor-
dination problem is that a particular activity may re-
quire specialized skills, thus constraining which actors
can work on it. This dependency between an activity
and an actor arises in some form in nearly every
organization. Coordination theory thus suggests identi-
fying and studying common dependencies and their
related coordination mechanisms across a wide variety
of organizational settings.

The second claim is that there are often several
coordination mechanisms that could be used to man-
age a dependency, as the task assignment example
illustrates. Possible mechanisms to manage the depen-
dency between an activity and an actor include man-
ager selection of a subordinate, first-come-first-served
allocation and various kinds of markets. Again, coordi-
nation theory suggests that these mechanisms may be
useful in a wide variety of organizational settings. Or-
ganizations with similar activities to achieve similar
goals will have to manage the same dependencies, but
may choose different coordination mechanisms, thus
resulting in different processes.

Finally, the previous two claims taken together imply
that, given an organization performing some task, one
way to generate alternative processes is to first identify
the particular dependencies and coordination problems
faced by that organization and then consider what
alternative coordination mechanisms could be used to
manage them.

To summarize, according to coordination theory, the
activities in a process can be separated into those that
are necessary to achieve the goal of the process (e.g.,

159

KEVIN CROWSTON Organizational Process Design -

that directly contribute to the output of the process)
and those that serve primarily to manage various de-
pendencies between activities and resources. This
conceptual separation is useful because it focuses at-
tention on the coordination mechanisms, which are
believed to be a particularly variable part of a process,
thus suggesting an approach to redesigning processes.
Furthermore, coordination mechanisms are primarily
information-processing activities and therefore, good
candidates for support from information-technology.

More broadly, coordination theory provides a way to
study the development of new organizational forms.
Form includes structure but also process, so changes in
process directly affect organizational form. A core as-
pect of process is the design of individual tasks, and
coordination is at the root of task design, as tasks are
decomposed and assigned to multiple actors. There-
fore, the study of coordination mechanisms and the
coordination of organizational processes provides a
fundamental way to analyze existing and developing
new organizational forms.

The aim of coordination theory is not new: defining
processes and attempting to improve performance has
been a constant goal or organization theory. The focus
on dependencies is also a recurring theme. Even the
idea of substitute mechanisms has been suggested; for
example, Lawler (1989) argues that the functions of an
organization’s hierarchy, many of which are ways of
coordinating lower level actions, can be accomplished
in other ways, such as work design, information systems
or new patterns of information distribution. However,
coordination theory makes many of these earlier no-
tions more precise by decomposing tasks and re-
sources. For example, the classic distinction among
sequential, interdependent, and network processes of
organizing can be decomposed into particular depen-
dencies managed by particular mechanisms. In this
view, a network, for example, is not a property of a
collection of organizations per se, but rather a restric-
tion on which actor is chosen to work on a particular
task (i.e., how a task-actor dependency is managed). In
a hierarchy, a task is assigned to an actor chosen from
within the organization, e.g., based on specialization or
managerial decision; in a market, from the set of
suppliers active in the market, e.g., by bidding; and in a
network, from the appropriate member of the network.

2.1. A Typology of Coordination Mechanisms

As a guide to such analyses, Crowston (1991) presents
a preliminary typology of dependencies and associated
coordination mechanisms. Refining and completing this
typology is an important ongoing research project, but

160

a preliminary typology of dependencies and examples
of associated coordination mechanisms is shown in
Table 1.

The main dimension of the preliminary typology
involves the types of objects involved in the depen-
dency. To simplify the typology, we compress the ele-
ments of Malone and Crowston’s (Malone and Crow-
ston 1994) framework into two groups: tasks (which
includes goals and activities) and resources used or
created by tasks (which here includes the effort of the
actors). Logically, there are three kinds of dependen-
cies between tasks and resources: those between two
tasks, those between two resources and those between
a task and a resource. (As a further simplification,
dependencies between more than two elements will be

Table 1 A Typology of Dependencies and Associated
Coordination Mechanisms from Crowston (1991)
Coordination Mechanisms to
Dependency Manage Dependency
Task-task
Tasks share common output
same characteristics 1 look for duplicate tasks
2 merge tasks or pick one to do
overlapping » negotiate a mutually agreeable
result
conflicting » pick one task to do
Tasks share common input
(shared resource)
shareable resource * no conflict
reusable resource 1 notice conflict
2 schedule use of the resource
nonreusable resource e pick one task to do

Output of one task is input
of other (prerequisite)
same characteristics order tasks

ensure usability of output

manage transfer or resources

reorder tasks to avoid conflict
add another task to repair

conflict

e W N —

conflicting

Task-resource
Resource required by task

—_

identify necessary resources

2 identify available resources

3 choose a particular set of
resources

4 assign the resources

Resource-resource
One resource depends
on another

—_

identify the dependency
2 manage the dependency

OraganizaTioN ScieNce/Vol. 8, No. 2, March-April 1997

KEVIN CROWSTON Organizational Process Design

decomposed into dependencies between pairs of ele-
ments.)

Some cells of this typology are more developed than
others; for example, task-task dependencies have been
analyzed in some detail, while the others have not.
Task-task dependencies are distinguished by consider-
ing what kinds of resources are shared by the two tasks
(e.g., shareable or reusable), how these resources are
used (as an input or as an output of the task), and
whether the required uses conflict with each other.

For each dependency, a brief description of an asso-
ciated coordination mechanism is given. For example,
to manage a task-resource dependency, the typology
notes that it is necessary first to identify required and
available resources, then to choose a particular re-
source and finally to assign the resource. Managing a
prerequisite dependency (a task-task dependency) re-
quires ordering the tasks, ensuring that the output of
the first is usable by the second and managing the
transfer of the resource from the first to the second.
These activities can be performed in many different
ways. For example, a manager with a task to assign
might know of the available resources or might have to
spend time hunting them down. Usability might be
managed reactively by testing the resource and return-
ing problems or proactively by involving the user in the
production of the resource.

3. Data and Methods

Coordination theory is intended to analyze organiza-
tions in a way that facilitates redesign. The question is,
does this approach work, that is, can we find depen-
dencies and coordination mechanisms in a real pro-
cess? Does this analysis help explain commonly used
alternative processes or suggest novel ones? I under-
took a case analysis to answer these questions in a
setting where the precise processes for decomposing
and completing tasks were observable. In the remain-
der of this paper, I present the application of coordina-
tion theory to a particular process, thus grounding the
claims of coordination theory within a carefully speci-
fied organizational domain.

3.1. Research Setting

In the remainder of this paper, I examine a software
change process, considering alternative forms the pro-
cess could take. The organization in this example was
the minicomputer division of a large corporation. In
1989, when the study started, the entire corporation
had sales of approximately $10 billion and roughly
100,000 employees. The computer division produced

ORrGanizaTION SciENce/Vol. 8, No. 2, March-April 1997

several lines of minicomputers and workstations and
developed system software for these computers.

Engineering Change Processes. This process was ex-
amined as part of a larger study of engineering change
processes. Engineering change processes are interest-
ing for several reasons. First, these processes require
individuals in engineering and manufacturing to coor-
dinate to be effective. Second, even though each change
is unique, the management of these changes is routine.
Pentland (1992) notes advantages to studying this sort
of routine work: each change forms a clearly bounded
unit of work with intensive records kept of each one.
Finally, nearly all manufacturing companies must man-
age product changes, so ideas for improving the perfor-
mance of this process could be of great value to such
organizations.

Although three organizations were included in the
full study, this paper focuses on the change process in
a software development organization. Software is inter-
estingly different from other products because it is not
a physical product. This product nature has two impli-
cations. First, the rate of changes is higher in software
than in hardware. Second, software problems are more
likely to be systematic than are hardware problems. A
problem with a piece of hardware may or may not
occur in another item: the problem may be due to a
design flaw, but it may also be a random failure. On
the other hand, a problem with a piece of software is
likely to occur in every copy of the software. As a
result, it is particularly important that software changes
be carefully controlled.

Lientz and Swanson (1980) distinguish three reasons
for making changes to a program: corrective, perfec-
tive, and adaptive. Corrective changes are those made
to fix problems. For the company in this study, prob-
lems are defined as disagreements between the be-
haviour of a program and its documentation. Fixing
problems usually requires changing the software to
make it agree with the documentation, but sometimes
the fix is made to the documentation instead. Perfec-
tive changes are those made to improve a correct
program without altering its behaviour (e.g., to improve
performance). Finally, adaptive changes are those that
add new functionality, altering the software to meet
changing requirements. The last two categories of
changes are system enhancements rather than bug fixes
and will not be discussed further in this paper.

Operating System Development. The group in this
study was responsible for the development of the ker-

161

KEVIN CROWSTON Organizational Process Design

nel of a proprietary operating system, a total of about
one million lines of code in a high-level language. An
operating system is the basic software of the computer;
its major function is to insulate programmers from the
details of the hardware. Additional functions permit
multiple users to share the computer without interfer-
ence. Increasingly, operating systems provide special-
ized services such as access to a network or database
and transaction management. The operating system in
this case study was broken into several subsystems,
such as the process manager or file system; each sub-
system was further divided into modules, each of which
implements a small set of services.

3.2. Data Collection

The analysis presented here was based on 16 interviews
with 12 individuals, including six software engineers,
two support group managers and three support group
members and one marketing engineer. The interviews
were carried out during six trips to the company’s
engineering headquarters; most were one to two hours
long. Additionally, a former member of the software
development group assisted in the data collection and
analysis.

As discussed above, coordination mechanisms are
primarily information-processing activities. Therefore,
this study adopted the information processing view of
organizations, which focuses on how organizations pro-
cess information (March and Simon 1958, Galbraith
1977, Tushman and Nadler 1978). The goal of the data
collection was to uncover, in March and Simon’s (1958)
terms, the programs used by the individuals in the
group. March and Simon suggest three ways to uncover
these programs: (1) interviewing individuals, (2) exam-
ining documents that describe standard operating pro-
cedures, and (3) observing individuals. I relied most
heavily on interviews. As March and Simon (1958)
point out, “most programs are stored in the minds of
the employees who carry them out, or in the minds of
their superiors, subordinates, or associates. For many
purposes, the simplest and most accurate way to dis-
cover what a person does is to ask him” (p. 142).

I started the data collection by identifying different
kinds of actors in the group. This identification was
done with the aid of a few key informants, and refined
as the study progressed. When available, formal docu-
mentation of the process was used as a starting point.
For example, a number of individuals designed and
coded parts of the operating system, all working in
roughly the same way and using the same kinds of
information; each was an example of a “software engi-
neer actor.” However, response centre or marketing

162

engineers used different information, which they pro-
cess differently. Therefore they were analyzed sepa-
rately.

Interview subjects were identified by the key infor-
mation based on their job responsibilities; there was no
evidence, however, that their reports were atypical. I
then interviewed each subject to identify the type of
information received by each kind of actor and the way
each type was handled. Data were collected by asking
subjects: (1) what kinds of information they received;
(2) from whom they received it; (3) how they received it
(e.g., from telephone calls, memos or computer sys-
tems); (4) how they processed the different kinds of
information; and (5) to whom they sent messages as a
result. When possible, these questions were grounded
by asking interviewees to talk about items they had
received that day.

I also collected examples of documents that were
created and exchanged as part of the process or that
described standard procedures or individual jobs. Not
surprisingly, the process as performed often differs
from the formally documented process. For example,
there was a formal method for tracking which engi-
neers used which interfaces, but in practice most engi-
neers seemed to rely on their memories. It was this
informal process (as well as the formal process sur-
rounding it) that I sought to document.

3.3. Validation of Data

The initial product of these studies was a model of the
change process (presented in more detail below) that
described the actors involved, which steps each per-
formed and the information they exchanged. It should
be noted that data were collected about only one group
because my contact at this company worked in that
group. My impression from interviews with individuals
who had worked in or who interacted with other groups,
was that processes were similar in other software de-
velopment units, however, I had no direct information
about other groups.

Relying on interviews for data can introduce some
biases. First, people do not always say what they really
think. Some interviews were conducted in the presence
of another employee of the company, so interviewees
may have been tempted to say what they think they
should say (the “company line”), what they think I
want to hear or what will make themselves or the
company look best. Second, individuals sometimes may
not know the answer or may be mistaken.

To control for interview bias, I cross-checked re-
ported data with other informants. I also used the
modelling process as a check on the data, applying the

OracanizaTioN SciENce/Vol. 8, No. 2, March-April 1997

KEVIN CROWSTON Organizational Process Design

negative case study method (Kidder 1981). In this
method, researchers switch between data collection
and model development, using predictions or implica-
tions of the model to guide the search for disconfirm-
ing evidence. When such data can not be found, the
model has been refined to agree with all available data.

3.4. The change process

Goals of the Change Process. The organization
stated the following goals for the change process:

- ensure that all critical program parameters are
documented: customer commitments, cross-functional
dependencies.

- ensure that a proposed change is: reviewed by all
impacted software development units/functions and
formally approved or rejected.

- ensure that document status is made available to
all users: stable (revision number and date); changes
being considered; approved /rejected /withdrawn.

- ensure changes are made quickly and efficiently.
In addition, the change process has two larger goals:
maintain the quality of the software and to minimize
the cost of changes. To maintain quality, the process
ensures that changes are made by someone who under-
stands the module involved, that changes are fully
tested, and that the module and its documentation are
kept in agreement. To reduce the cost of changes, the
change process requires that changes be made only to
fix a problem or add an authorized enhancement. As
one manager put it, the “formal change control process
is there to prevent changes.”

The activities performed for a typical change are
summarized in the flowchart shown in Figure 1. Actors
involved in the process are listed at the top of the
column of activities they perform. To save space, the
flow continues from the bottom right of the chart to
the top left; the activities on the right follow rather
than overlap those on the left. A short description of
the steps in this process is given in Appendix A and a
more detailed description is available from the author.
(Note that the response centre was treated as a collec-
tive actor. As a result, internal centre activities are
omitted from the flowchart of the process.) Although
no particular bug is necessarily treated in exactly this
way, these activities were described as typical by my
interviewees.

4. Dependencies and Coordination

Mechanisms in Software Bug Fixing
Given a process, the claim of coordination theory is
that we can generate alternative processes by first

ORrGaNIzATION SciEnce/Vol. 8, No. 2, March-April 1997

identifying the coordination mechanisms currently in
use and then trying alternative coordination mecha-
nisms in their place. In the following two sections, I
first describe the current coordination mechanisms and
then discuss the implications of various alternative
mechanisms.

4.1. Identifying Current Dependencies and Coordination
Mechanisms

While making a change to the system, numerous de-
pendencies must be managed. The best way to identify
dependencies and coordination mechanisms is still an
active area of research, but three heuristics seem plau-
sible (Osborn 1993). First, we can examine activities in
the current process identify those that seem to be part
of some coordination mechanism, and then determine
what dependencies they manage. Second, we can list
the activities and resources involved in the process,
consider what dependencies are possible between them,
and then determine how these dependencies are being
managed. Finally, we can look for problems with the
process that hint at unmanaged coordination problems
and identify the underlying dependencies.

4.1a. Looking for Coordination Mechanisms

Taking the first approach, many of the activities in the
bug fixing process appear to be instances of the coordi-
nation mechanisms discussed earlier. Table 2 lists the
activities performed in the current bug fixing process.
The dependency the activity manages, if any, is listed
in the third column.

For example, one of the first things the customer
service centre staff and marketing engineers do upon
receiving a problem report is check if it duplicates a
known problem listed in the Software Problem Report
(SPR) database. In the typology, looking for duplicate
tasks is listed as a coordination mechanism for manag-
ing a dependency between two tasks that have dupli-
cate outcomes. The organization can avoid doing the
same work twice by noticing the duplication and reusing
the result of one of the tasks (as happened in this
example).

Task assignment is a coordination mechanism for
managing the dependency between a task and an actor
by finding the appropriate actor to perform the task.
Such coordination mechanisms are performed repeat-
edly in this process: customers assign tasks to the
customer service centre, the customer service centre
assigns novel tasks to the marketing engineers, market-
ing engineers assign them to the software engineers
and software engineers assign tasks to each other.

163

Organizational Process Design

KEVIN CROWSTON

x1} pasodosd
asinay

sloauibus
18410 yym
abueyo pasodoid
ssnosiqg

sasea|al Jayjo
o} sebueyo
ubiseqg

2sases|al Jayio
o} sabueyo

wajqo.d
10} x1y ubisag

aseqejep Hds

u uBisseey

wajqo.d
asoubeiq

swa|qoid mau
P 10} aseqejep

aseqereq Hds

uoneibaju|

pieog abueyn
pue siabeuepy

2IBM}jOS
B840

HdS %03ud

PEENIE]
alemjos

aseqelep Hds
u| Juswubisse

oseqejep
u1 6ng dnyoo1

swajqoid mau
o} aseqejep
HdS %0940

%

papirold
PUNOJIBNIOM IO XI4

aseqejep

aseqeIeq HdS

Jebeuew
Buiwweiboly

199u16Ud
Bunexsepy

Hdds ut Hodas
wa|qoud g

198uibua -
Bunesyew
pue pajoaje
Jonpoud auusiag

papirod
punoJexom
10 X14

oseqejep
ul Bng dnyoo

paurejdxa
wsa)qoid

¢6nq [eay

passjunoous
wa|qoid

aluay
asuodsay

Jawoisny

*ssa%0.d bBuixyy 6ng aiemyos Jo ueyomoj4 'L ainbi4

OraGanizaTioN ScieNce/Vol. 8, No. 2, March-April 1997

164

KEVIN CROWSTON Organizational Process Design

N

iswajqoid
A

waysAs yum
3ul| pue ajnpow
9|idwooay

aseqejep
HdS Ul pasop
wajqoid Yrep

punoy
swa|qoid

apod
pabueyo isa |

sjuswnoop
sjepdn

X1y 1o}
2P0 M

T‘

sajnpow

Jayjo 0}
sabueyo ayep

sabueyo
jsenbay

2se|npow Jayio

0} sabueyg

abueyo
anoiddy

pleog abueyny alemyos

aseqeleq HdS uonesBa| puE sioBeuEN 10

£uswindop
Pa||0u0o
o} abueyn

J99ulbus
alemyog

aseqelep Hds
uj uawubisse
- om0
a|npow
Joy |qisuodsai
199ulbus
aulusleq
swajqold mau
10} aseqejep
ddS »°8ud
SSeqelep Hds
ul Juswubisse
abueyd
dnoib
Buiwwesboid
pue ajnpow
pajodye duiuusieg
Awuoud jog
ssaooud
Juswaoueyug
Zluaweoueyul
10} 1senbay N
sseqER Jabeuew 19auibus
qEIed HdS Bulwuweiboig Bunasepn

wajsAs au}
1O UOISIaA MBN

JENTOETo)

165

OracanizaTION ScIENCE/Vol. 8, No. 2, March-April 1997

KEVIN CROWSTON Organizational Process Design

Table 2 Activities in the Software Problem Fixing Process
Actor Activity Dependency Managed between. ..
Customer Find a problem while using system

Response Centre

Marketing
Engineer

Programming
Manager or
Designate
Software
Engineer

Managers
Software
Engineer

Integration

Report problem to response centre

Look for bug in database of known bugs; if found, return fix
to customer and stop

Attempt to resolve problem

Refer hardware problems to field engineers

If problem is novel, determine affected product and
forward bug report to marketing engineer

Look for bug in database of known bugs; if found, return fix
to customer

Request additional information if necessary

Attempt to reproduce problem

Attempt to find workaround

Set priority for problem

If the report is actually a request for an enhancement, then
treat it differently

Determine affected module

If unable to diagnose, forward to SWAT Team

If bug is in another product, forward to appropriate
product manager

Forward bug report to manager of group responsible for
module

Determine engineer responsible for module and forward
bug report to that engineer

Pick the report with the highest priority, or the oldest, or
the one you want to work on next

Diagnose the problem

If the problem is in another module, forward it to the
engineer for that module

Design a fix for the bug

Check if change is needed in other releases and make the
change as needed

Send the proposed fix to affected engineers for their
comments; if the comments are negative, then revise the
bug and repeat the process

If the change requires changes to a controlled document,
then send the proposed change to the various managers
and the change review board for their approval

Approve the change

Write the code for the fix

Determine what changes are needed to other modules

If necessary, ask the engineers responsible for the other
modules to make any necessary changes

Test the proposed fix

Send the changed modules to the integration manager

Release the patch to be sent to the customer

Check that the change has been approved

Recompile the module and link it with the rest of the
system
Test the entire system

Release the new software

Problem fixing task and capable actor
Problem fixing task and duplicate tasks

Problem fixing task and capable actor
Problem fixing task and capable actor

Problem fixing task and duplicate tasks

Usability of problem report by
next activity

Usability of problem report by
next activity

Problem fixing task and actor’s time
Task and resources required

by tasks
Problem fixing task and capable actor

Problem fixing task and capable actor

Problem fixing task and actor's time

Problem fixing task and capable actor

Two modules

Management of usability task
and capable actor

Usability of fix by next activity

Task and subtasks needed to
accomplish it
Problem fixing task and capable actor

Usability of fix by next activity

Task and capable actor

Transfer to customer

Usability of fix by integration
activity

Usability of entire system by
next activity
Transfer to customers

166

OracanizaTioN ScieNcE/Vol. 8, No. 2, March-April 1997

KEVIN CROWSTON Organizational Process Design

4.1b Looking for Dependencies

The second approach to identifying coordination
mechanisms is to list the tasks and resources involved
in the process and then consider what dependencies
are possible between them. It may be that some of the
activities in a process are coordination mechanisms for
managing those dependencies. As mentioned above,
tasks necessary to respond to problem reports include
noticing there is a problem, finding a workaround,
reproducing and diagnosing the problem, designing a
fix, writing new code and recompiling the system with
the new code. These activities are shown in bold in
Table 2. Resources (in the sense of the typology of
coordination mechanisms) include the problem reports,
the efforts of a number of specialized actors, and the
code itself.

Task-task Dependencies. Dependencies between
tasks can be identified by looking for resources used by
more than one task. For example, many tasks create
some output, such as a bug report, a diagnosis, or new
code, that is used as input by some other task, thus
creating a prerequisite dependency between the two.
Malone and Crowston (1994) note that such dependen-
cies often impose usability and transfer constraints.
Some steps in the process appear to manage such
constraints. For example, testing that a new module
works correctly addresses the usability constraint be-
tween creating code and relinking and using the sys-
tem; releasing the new system addresses the transfer
constraint between the company and the final user of
the system.

If there are two problems in the same module, then
both bug fixing tasks need the same code, thus creating
a shared resource dependency. In this process, this de-
pendency is managed by assigning modules of code to
individual programmers and then assigning all prob-
lems in these modules to that programmer. This ar-
rangement is often called “code ownership,” because
each module of the system has a single owner who
performs all tasks that modify that module. Such an
arrangement allows the owner of the code to control
all changes made to the code, simplifying the coordina-
tion of multiple changes.

Task-resource Dependencies. The second category of
dependencies is those between tasks and resources,
which are managed by some kind of task or resource
assignment. These coordination mechanisms were
identified and discussed above.

Resource-resource Dependencies. Finally, there are
dependencies between modules owned by different en-

ORGANIZATION ScIENCE/Vol. 8, No. 2, March-April 1997

gineers, that is, resource-resource dependencies, that
constrain what changes can be made. A module de-
pends on another if the first makes use of services
provided by the second. For example, the process man-
ager may use routines that are part of the file system;
therefore, the process management code depends on
the file system code.

Such dependencies must be noticed or identified
before they can be managed by arranging for coordi-
nated changes. Interactions between different parts of
a software system are not always obvious, since they
are not limited to direct physical connections. In prin-
ciple, it should be easy to detect dependencies auto-
matically by examining the code. In practice, however,
there seem to be no reliable mechanical means to
determine the interactions between different modules.

Instead, dependencies are tracked by manually
tracking documents. The set of routines and data pro-
vided by a module make up what is called the interface
to that module. Different interfaces are provided for
different classes of users. Customer interfaces are de-
scribed in published manuals and are therefore rarely
changed. Service interfaces are provided for use by
developers of other parts of the system software and
are described in formal documents, called external
specifications, which are circulated within the company
but usually not to customers. Interfaces intended for
use only within a single development group are de-
scribed in an informally circulated internal specifica-
tion, if they are documented at all.

Copies of manuals and external specifications are
kept in a documentation library; internal specifications
are maintained only by their developer. Programmers
who request a document from the document library are
tracked so they can be informed of any changes to the
document. At the time of my study, there were 800 to
900 documents in the library, and about 1000 docu-
ment requestors being tracked. A total of 15,000 copies
of documents had been distributed.

In practice, however, programmers sometimes bor-
row a document or copy pieces of someone else’s code
and therefore do not realize that they should inform
the developer. Because the documentation lists are not
reliable, identification of other affected engineers is
done by the software engineer planning a change based
mostly on their knowledge of the system’s interactions
and what other developers are doing.

4.1c Looking for Coordination Problems

A final approach for identifying dependencies is to
look for problems in the process that suggest unman-
aged dependencies. For example, the company occa-

167

KEVIN CROWSTON Organizational Process Design

sionally found at system integration or during testing
that a change made to one module was incompatible
with others, despite the efforts to detect and avoid
interactions described in the previous section. These
problems occur because some dependency between the
module being changed and other modules were not
detected and managed. (In other words, the depen-
dency identified by this approach duplicated one al-
ready known.)

Some of these problems can be traced to the heuris-
tic mechanism used to locate dependencies. In particu-
lar, because there is little informal communication
between divisions, the mechanism does not work very
well if modules are developed in different divisions.
For example, in the organization studied, the word
processing system once became the source of mysteri-
ous system crashes. It turned out that the word proces-
sor’s developers had used a very low-level system call
that had been changed between releases of the operat-
ing system. However, because the word processor was
developed in another unit, the programmers of the two
modules did not communicate. Thus, the developers of
the word processor did not know they should avoid the
system call nor did the developer of the system call
know the word processor developers were using it. In
other words, the usual social mechanism for finding
dependencies between modules failed, leading to the
problems.

4.1d Summary

To summarize, there are three heuristics that can be
used to identify dependencies and coordination mecha-
nisms in a process. The first approach is to match
activities performed against known coordination mech-
anisms, such as searching for duplicate tasks or task
assignment. The second approach is to identify possi-
ble dependencies between activities and resources and
then search for activities that do manage these. In the
example, we identified prerequisite, shared resource,
and resource-resource dependencies that were man-
aged. The final approach is to look for problems that
suggest unmanaged or incompletely managed depen-
dencies. The coordination mechanisms identified are
both generic, such as task assignments, and specific,
such as code sharing systems. I believe such analyses
will become easier to carry out as we gain experience
and build a more complete typology of dependencies
and coordination mechanisms.

4.2 Developing New Processes

Given a flowchart of a process such as Figure 1, a
common approach to redesign is first to look for prob-

168

lems such as redundant or nonvalue added steps, or
places where tasks spend long periods waiting to be
worked on, and then to modify the process to address
these problems (Harrington 1991, pp. 134-163;
Hammer and Champy 1993, pp. 122-126). For exam-
ple, the current change process assumes that customers
cannot fix problems. The process could be modified to
allow customers to do more diagnosis, such as checking
for known bug fixes. As it happened, a database of
documents was developed at the conclusion of our
study to allow just this. Customers can dial in to the
database and search for documents that describe their
problem and the appropriate workaround or patch
information. Customers who find solutions can order
the patch or apply the workaround; if not, they can
leave an electronic request for a return call from the
response centre, starting the change process described
above.

Coordination theory suggests another approach to
redesign, namely, replacing some coordination mecha-
nisms with alternatives. In the remainder of this sec-
tion, I discuss three examples involving alternative
techniques for managing the task-task, resource-
resource and task-resource dependencies described
above.

Alternative Mechanisms for Managing Prerequisite De-
pendencies. In problem fixing, several activities ensure
that the output of one task is usable by another. For
example, marketing engineers check that problem re-
ports are detailed enough to be used by the engineers
fixing the bugs; bug fixes are tested at several points to
check that they correctly fix the problem and do not
introduce new problems.

Along with these tests, managers must approve
changes before they can be implemented. Such ap-
provals provide a check on the quality of the change,
either directly, if the manager notices problems, or
indirectly, if engineers are more careful with changes
they show their managers. There are other possible
interpretations of this approval process: managers
might use the information to allocate resources among
different projects, to track how engineers spend their
time, or even to demonstrate their political power.
However, if approvals are a quality check, other mech-
anisms might be appropriate, in this and any other
process. For example, if approvals are time-consuming
yet likely, it may be more effective to continue the
change process without waiting for the approval. Most
changes will be implemented more quickly; the few
that are rejected will require additional rework, but the
overall cost might be lower. Alternatively, managerial

ORrGaNizaTION ScIENCE/ Vol 8, No. 2, March-April 1997

KEVIN CROWSTON Organizational Process Design

reviews could be eliminated altogether in favour of
more intensive testing and tracking of test results.

Alternative Mechanisms for Managing Resource-
resource Dependencies. Resource-resource dependen-
cies are important in complex design processes, partic-
ularly in computer software, in which dependencies are
not easily visible. Changes with effects outside a single
module require coordinated changes to the affected
modules. Such dependencies must first be noticed and
then managed. However, noticing dependencies can be
difficult, as discussed above. One solution to the issue
of hidden dependencies is to avoid changes that create
problems. This can be done by providing documented
service interfaces for the data and calls programmers
use, restricting interactions to these interfaces and
then freezing the interfaces. A second solution is to try
to keep the dependencies visible, in other words, to
better track what interfaces people are using. However,
the current system does not track all users successfully,
and it is unclear what changes would guarantee that all
users registered. A final possibility would be to develop
mechanisms for finding otherwise hidden dependen-
cies. It seems that this should be straightforward for
software, but it was problematic for the organization in
this study. However, with more work, such a system
could probably be developed.

Alternative Mechanisms for Task Assignment. In the
analysis, we noted numerous places where actors per-
form part of a task assignment process. For example,
customers give problem reports to the service centre,
which in turn assigns the problems to product engi-
neers, who then assign them to software engineers. In
addition, software engineers may assign reports or sub-
tasks to each other.

The typology points out that a key problem in task
assignment is choosing the actor to whom to assign a
task. Currently, the choice is made based on specializa-
tion. This system allows engineers to develop expertise
in a few modules, which is particularly important when
the engineers are also developing new versions of the
system. Furthermore, since modules are assigned to
engineers, the code sharing problem discussed above is
minimized. However, there are also disadvantages.
First, diagnosing the location of a problem can be
difficult, because symptoms can appear to be in one
module as a result of problems somewhere else. In the
best case, an error message will clearly identify the
problem; otherwise, the problem will be assigned to the
most likely area and perhaps transferred later. In any
event, making the assignment correctly requires a fair

ORraGanizaTioN Science/Vol. 8, No. 2, March-April 1997

amount of work and experience for the assigner, as is
evidenced by the multiple layers involved in making the
assignment. A second problem is load balancing: one
engineer might have many problems to work on, while
others have none.

An alternative basis for choosing engineers was found
in a new support group that was set up during our
study. Support engineers were not specialized by mod-
ule, but were instead organized around change owner-
ship, that is, an engineer assigned a particular problem
report makes changes to any affected modules. As a
result, task assignment can be done based on workload
rather than specialization. In this case, a manager can
make the assignment by tracking the status of individ-
ual engineers, or engineers can assign work to them-
selves whenever they finish a task. Many processes
could be similarly redesigned to use generalists rather
than specialists. For example, in a customer service
process, the person who answers the phone could be
enabled to resolve any problem rather than having to
refer the problem to a specialist.

With change ownership, multiple engineers may have
to work on the same module, thus creating a new
shared resource dependency. This problem illustrates
an important point: coordination mechanisms are
themselves activities, and using a different kind of
coordination mechanism to manage one dependency
may create new dependencies that must in turn be
managed. In this case, to manage these new task de-
pendencies, the company implemented a source con-
trol system. The system maintains a copy of all source
files. When engineers want to modify a file, they check
it out of the system, preventing other programmers
from modifying it. When the modification has been
completed, the module is checked back in and the
system records the changes made. The activities and
analysis of this form are shown in Table 3.

The reorganization discussed above provided the
substitution of a specialist mechanism for task assign-
ment with a generalist mechanism. A more extreme
substitution is to use a market-like task assignment
mechanism. In this form, each problem report is sent
to all available engineers. Each evaluates the report
and, if interested in fixing the bug, submits a bid,
saying how long it would take to fix the bug, how much
it would cost or even what they would charge to do it.
The task is then assigned to the lowest bidder, thus
using information supplied by the engineers themselves
as the basis for picking which engineer should work on
the task. Many companies have out-sourced or switched
to subcontractors for specific tasks, including some as
central as engineering, customer service, or production,

169

KEVIN CROWSTON Organizational Process Design

Table 3 Activities in the Generalist Form of Task Assignment
Dependency Managed
Agent Activity between...
Customer Use system, find a bug
Report bug to response centre Problem fixing task
and capable actor
Response Look up bug in database of known bugs; if found, Problem fixing task
Centre return fix to customer and stop and duplicate tasks
Determine affected product and forward bug report to Problem fixing task
marketing engineer and capable actor
Marketing Look up bug in database of known bugs; if found, Problem fixing task
Engineer return fix to customer and stop and duplicate tasks
Attempt to reproduce the bug-—part of diagnosing it
determine affected module; if can’t diagnose, forward Problem fixing task
to SWAT Team; if other product, forward to and capable actor
appropriate product manager; put bug report in the
queue of bugs to work on
Software Start work on the next bug in the queue Problem fixing task
Engineer and actor'stime
Diagnose the bug
If it's actually an enhancement request, then treat it
differently
Design a fix for the bug
If the change requires changes to a controlled Management of
document, then send the proposed change to the usability task and
various managers and the change review board for capable actor
their approval
Managers Approve the change Usability of fix by
subsequent activities
Software Check out the necessary modules; if someone else is Problem fixing task
Engineer working on them, then wait or negotiate to work and other tasks using
concurrently the same module
Write the code for the fix
Test the proposed fix Usability of fix by
subsequent activities
Send the changed modules to the integration manager;
check in the module
Integration Check that the change has been approved Usability of fix by

Recompile the module and link it with the rest of the
system
Test the entire system

Release the new software

subsequent activities
Integration

Usability of entire
system by next
activity

although usually for larger units of work. Many indus-
tries rely almost entirely on subcontractors for individ-
ual tasks (e.g., construction, Italian textile manufactur-
ing, and publishing).

To summarize, new processes for fixing bugs can be
generated by substituting alternative coordination

170

mechanisms for the ones used in a process. Some of
these substitutions may be applicable to many pro-
cesses, such as the alternative ways to manage ap-
provals or task assignments, while others can be quite
specific to the details of a particular process, such as a
code management system. The process is recursive:

ORrganizaTioN Science/Vol. 8, No. 2, March-April 1997

KEVIN CROWSTON Organizational Process Design

substituting one coordination mechanism for another
may create new dependencies which in turn require
additional coordination mechanisms.

4.3. Evaluating Alternative Organizational Processes
Before implementing any changes, it is important to
evaluate the advantages and disadvantages of each
kind of form. Clearly, this is hard to do in any general
way, because the performance of a process depends
heavily on its details and organization being studied.
However, for the specific process changes discussed
above, we can suggest one evaluation.

This section evaluates the three forms of task assign-
ment considered above—specialist, generalist, and
market-like—following Malone and Smith’s (1988)
analysis of four different organizational structures. In
this model, tasks arrive at an organization and must be
assigned to an actor who can execute them. (This
model is general enough to represent many processes
besides software bug fixing.) Malone and Smith com-
pare organizational forms on three criteria: production
cost (the average delay to process a task), coordination
cost (the number of messages necessary to assign a
task), and vulnerability of the form to failures of an
actor (i.e., whether the organization still functions if
one actor does not perform assigned tasks).

Many other factors could be added to complicate
such a model. I will briefly consider three additional
factors previously discussed: learning by engineers who
work repeatedly on the same modules might reduce
production costs; diagnosing a problem to choose an
appropriate specialist and decomposing and distribut-
ing complex problems across specialists might increase
coordination costs. Calculating these costs requires
some detailed assumptions about parameters of the
system, e.g., what proportion of tasks is complex or
how long it takes to diagnose a problem versus sending
a message. However, even without these assumptions,
some qualitative comparisons can be made.

The first form, assignment based on specialists, has a
low coordination cost. Assigning a task requires only
four messages, from the customer to the service centre,
from the service centre to the marketing engineer,
from the marketing engineer to the engineering man-
ager and from the manager to the software engineer.
Each of these actors must evaluate the task and iden-
tify the appropriate specialist to work on it next.

Because software engineers are specialists, presum-
ably they can quickly fix problems once assigned a task.
However, problems that span modules must be decom-
posed and assigned to multiple engineers. If the load is
distributed unevenly (i.e., some modules have more

OrcanizaTioN Science/Vol. 8, No. 2, March-April 1997

problems than others), then a problem may have to
wait until the responsible engineer is free, increasing
the time to finish the task. The engineer does not have
to wait for the code to become available, however.

Finally, the form is vulnerable to the failure or
overloading of a single actor because the engineer
responsible for each module has no backup (in prac-
tice, of course, other engineers could try to fill in,
although with greatly reduced productivity). Assign-
ment based on module reinforces specializations by
module, because engineers have little opportunity or
need to learn about other parts of the system, and a
large incentive to become expert in their modules.

The cost of the task assignment in the generalist
model is also low, requiring the same number of mes-
sages. Furthermore, the final assignment is done by
workload, eliminating the need for the marketing engi-
neer to identify the specific module involved. Problems
are handled by the next available actor, minimizing
waiting time and reducing vulnerability of the organiza-
tion to the failure of a single engineer. However,
because the engineers are generalists, the time they
take to fix a module is likely to be higher than in the
specialist model. Because the organization does not
take advantage of performance differences between
actors, engineers do not have much incentive (or op-
portunity) to improve performance by learning about
particular modules. Finally, if someone else is already
working on a problem in the module, then the engineer
will have to wait for the code to be available to make
the changes.

The market-like model has a much higher coordina-
tion cost, because it requires many messages to assign
each task (one for each bid request and bid). The cost
of processing these messages includes, for example, the
cost of having each engineer read each problem report.
However, problems can be immediately assigned, al-
though the engineer may have to wait for the code to
be available to make the changes. Finally, in this model,
the task will be assigned to the actor with the lowest
bid, thus taking advantage of differences in knowledge.
If the actors learn about a particular module, they can
specialize, preferentially bidding for one type of task
and constantly improving their performance on it. For
example, an engineer who has recently worked on one
module may be able to bid lower for other changes in
that module.

The relative costs of these three forms are summa-
rized in Table 4. Of course, researchers have identified
additional factors that affect the feasibility of these
forms. For example, the market-like form is susceptible
to agency problems: if engineers are rewarded based

171

KEVIN CROWSTON Organizational Process Design

Table 4 Relative Costs of Different Task
Assignment Mechanisms
Cost Specialists Generalists Market-like

Production costs

Waiting for engineer Necessary Unnecessary Unnecessary

Waiting for module Unnecessary Necessary Necessary
Fixing problem Low High Low
Takes advantage On assigned No Yes

of learning modules
Coordination costs
of diagnoses 4 2 2+ N
of messages to assign 4 3 2N

Decomposition and
assignment of
subtasks

Vulnerability to failure High Low Low

Necessary Unnecessary Unnecessary

Note: N is the number of software engineers.

on the number of bugs they fix, they might bid unreal-
istically low to win assignments; if they are paid a flat
salary, they might not bid at all. As with the product of
any redesign method, the implications of such factors
must be considered before a particular form can be
recommended.

4.4 Effects of Electronic Media on the Choice
of Coordination Methods

Coordination theory provides a useful theoretical
framework for analyzing the implications of new com-
munications technologies. An organization’s choice of
coordination mechanisms is affected by its relative
costs, which in turn depend on the technology avail-
able. The use of electronic media (and other kinds of
IT) changes the relative cost of coordination mecha-
nisms, making new processes feasible or desirable.
Coordination theory thus provides a conceptual link
between organizational form and the use of communi-
cation technology.

« For task assignment, communications technology
makes it easier to gather information about available
resources and to decide which resources to use for a
particular task. At a macro level, Malone, Yates, and
Benjamin (1987) suggest that decreased coordination
costs favour more extensive use of markets, which
usually have lower costs but require more coordination
activities, over vertical integration, which makes the
opposite trade-off.

» Avoiding duplicate tasks is difficult if there are
numerous workers who could be working on the same
task. For example, in a software company, the same

172

bug may be reported by many users; the company
would prefer not to diagnose and solve this problem
repeatedly. Past solutions to this problem include cen-
tralizing the workers to make exchange of information
easier, specializing workers so that identical tasks are
all assigned to the same worker or simply accepting the
duplication. New alternatives include an information
system containing information about tasks and known
solutions or communications technologies, such as a
computer conferencing system, that can cheaply broad-
cast questions to a large community (Finholt and
Sproull 1990).

« Just-in-time delivery of components, a new way to
manage prerequisite dependencies between suppliers and
users, is in large part a communications innovation:
new information transmission methods replace keeping
inventories on hand in the plant.

« For sharing information resources, communications
and database technologies may automate the necessary
coordination mechanisms. For example, coordination is
necessary if multiple tasks use common information
stored on paper (a shared resource dependency). It
may therefore be desirable to have a single individual
handle all the data, to simplify the coordination. For
example, a conference room schedule is usually kept in
a central location because of the possibility of conflict-
ing reservations and the prohibitive cost of updating
copies every time a reservation is made. Data such as
customer accounts or credit information are often han-
dled similarly, resulting in specialization of actors based
on their access to information. Database and commu-
nications systems enable multiple workers to access
and make changes to data. By empowering workers
and reducing the need for specialization, IT can change
the basis for assigning tasks. For example, if all work-
ers are equally capable of performing a task, then tasks
can be assigned on criteria such as workload or the
customer involved, rather than on availability of data
or specialization. Such a change was made to the
Citibank letter of credit process when a group of
specialists, each performing a single step of the pro-
cess, were replaced by generalists who handle the
entire process for particular customers (Matteis 1979).

Clearly, the exact form of the technology is less
important than the functionality it provides. In the case
discussed in this paper, for example, the main commu-
nications channel between groups is actually a database
of change requests rather than a more conventional
system like electronic mail or computer conferencing.
(Electronic mail was available, but not heavily used
within the software development group.) However, the
database system provides much of the same functional-

ORrGaNizaTION SciENCE/Vol. 8, No. 2, March-April 1997

KEVIN CROWSTON Organizational Process Design

ity as electronic mail and was sometimes even used in
the same way. For example, on one occasion the re-
sponse centre created a new change request to enter a
question about the status of an older report; the re-
sponsible engineer then replied to the question in
another field of the database and closed the request.

Thus, rather than focusing on specific technology,
one approach to analyzing such technologies is to con-
sider which of a system’s attributes are important. Nass
and Mason (1990) discuss numerous dimensions of
communications technology; key attributes for the case
above include permanence across time, one-to-one Vvs.
one-to-many communication and programmability and
integration with computer technology.

Permanence across time means that messages en-
tered into the system can easily be retrieved later.
Computer conferencing and databases have this prop-
erty; telephones and ordinary electronic mail do not
(although messages from both can be archived). This
function allows the product of fixing a problem to be
stored and reused, a key part of one of the coordina-
tion mechanisms discussed above.

A second key characteristic is the number of possible
recipients for a single message. Telephones are usually
one-to-one; paper memos can be one-to-many, for a
cost; and electronic media can be one-to-many with
almost no extra cost. This functionality enables more
coordination intensive forms. For example, in the mar-
ket-like form, the response centre needs to send the
same message (a bid request) to all software engineers.
The organization could use a computer bulletin board
on which task announcements are posted to support
this communication. Such a system would reduce the
coordination cost by replacing multiple bid request
messages with a single broadcast.

Finally, electronic communications media may be
programmable or integrated with computer technology,
potentially automating parts of certain coordination
mechanisms. For example, such a system could filter
problem reports for engineers based on an interest
profile, reducing the number that need to be evaluated
in a market-like task assignment mechanism. Bid pro-
cessing and awarding could also be easily automated,
further reducing the cost of a market-like mechanism,
perhaps enough to make it desirable.

S. Conclusion

Engineering change provides a microcosm of coordina-
tion problems and mechanisms to solve them. Success-
ful implementation of a change requires management
of numerous dependencies among tasks and resources.

ORrGANIZATION ScIENCE/Vol. 8, No. 2, March-April 1997

A variety of mechanisms are used to manage these
dependencies. For example, the possibility of duplicate
tasks may be ignored or may be investigated before
engineers attempt to solve the problem. Dependencies
between tasks and the resources needed to perform
them are managed by a variety of task assignment
mechanisms, such as managerial decision-making based
on expertise or workload; those between modules of
the system, by technological coordination mechanisms,
such as source control systems.

The choice of coordination mechanisms to manage
these dependencies results in a variety of possible
organizational forms, some already known (such as
change ownership) and some novel (such as bidding to
assign problem reports). The relative desirability of
mechanisms is likely to be affected by the use of
electronic media. For example, the use of a computer
system may make it easier to find existing solutions to a
problem, either in a database or from geographically
distributed coworkers. Such a system could reduce
both duplicate effort and coordination costs.

The software change process has interesting parallels
in other industries. Despite differences in the products,
other engineering change processes studied by this
author (Crowston 1991) had similar goals, activities,
coordination problems, and mechanisms. Further
afield, one reviewer noted parallels between diagnos-
ing software bugs to assign them to engineers and
diagnosing patients to assign them to medical special-
ists. An analysis similar to the one presented here
might reveal interesting alternatives in the medical
diagnosis domain as well. Such an effort may be partic-
ularly timely, given the leading role IT-enabled changes
play in some proposals to revamp health care systems.

Coordination theory, like all theories, is a simplifica-
tion of the complexity of real organizations. It de-
scribes a variety of alternative processes, while high-
lighting the contribution of new communications media
and other information technologies. The single exam-
ple presented here demonstrates the potential of this
approach. However, the suggestions of the analysis
need to be tempered by consideration of omitted fac-
tors. The technique focuses on how tasks are per-
formed, rather than how employees are motivated to
perform, come to understand their jobs, or develop
shared cultures. For example, a lower mechanism cost
does not mean that that mechanism is always better or
should be implemented. As mentioned above, market-
like task assignment mechanisms have certain cost ben-
efits, but are also susceptible to agency problems that
must be addressed if they are to succeed. Rather than
saying what must happen, the analysis suggests possibil-

173

KEVIN CROWSTON Organizational Process Design

ities that an informed manager can consider and mod-
ify to fit the particulars of the organization.

Said alternatively, coordination theory does not make
strong predictions about what must happen to any
single organization that implements a new communica-
tion system, although it does suggest what will happen
in aggregate (Malone et al. 1987). Rather than the
specific accuracy of its predictions, therefore, an ap-
propriate test for the theory is its utility for organiza-
tion designers. Coordination theory is a success if those
attempting to understand or redesign a process find it
useful to consider how various dependencies are man-
aged and the implications of alternative mechanisms.
As an example, we are currently using these techniques
to compile a handbook of organizational processes at a
variety of levels and in different domains (Malone et
al. 1993). Managers or consultants interested in re-
designing a process could consult the handbook to
identify likely alternatives and to investigate the advan-
tages or disadvantages of each. Coordination theory
makes the handbook feasible by providing a framework
for describing more precisely how processes are similar
and where they differ.

A redesign agenda suggests several additional re-
search projects. First, development of the handbook
and general use of a coordination-theory analysis re-
quire more rigorous methods for recording processes
and identifying dependencies in organizations. There
are already many techniques for data collection that
are relevant, but none focus explicitly on identifying
dependencies. Other researchers affiliated with the
handbook project have proposed an approach that
relies on basic techniques of ethnographic interviewing
and observation to collect data and activity lists to
identify dependencies and coordination mechanisms
(Pentland et al. 1994). Prototypes of such methods are
currently being used for our research and in the class-
room. Experiences to date attempting to teach students
to use this technique indicate that it takes a while to
pick up the ideas, but that using them leads to greater
insight into the process.

Second, more work is needed to elaborate the typol-
ogy of dependencies, particularly those between ob-
jects, and associated mechanisms. Identifying addi-
tional mechanisms is an inevitable result of the work
being done to record a variety of processes, and I
expect that better ways to organize these mechanisms
will be developed. Finally, computer simulations of
processes will provide an aid to understanding the
performance of processes using alternative coordina-
tion mechanisms and might even automate the explo-
ration of alternative forms.

174

Although still under development, coordination the-
ory seems to provide a much-needed underpinning for
the study and design of new organizational processes.
The result of these efforts will be a coordination-theory
based set of tools for organizational analysts and de-
signers, which perhaps will help realize the potential of
electronic media and new organizational forms.

Acknowledgment

This research was supported by the Center for Coordination Science
at the Massachusetts Institute of Technology and a fellowship from
the Ameritech Foundation through the University of Michigan Insti-
tute for Public Policy Studies. The field work and preliminary analy-
sis described in §3 was done with the assistance of Stephen Brobst.
The paper has benefited from discussions with Michael Cohen,
Jin-tae Lee, Thomas Malone, Charlie Osborn, Brian Pentland, and
other members of the CCS Process Handbook Project, comments
from Gerardine DeSanctis and anonymous reviewers, editing by
Nancy Kotzian, and from repeated and careful reading by Marie
Williams.

Appendix A

The Software Change Process

The software maintenance process starts when a problem is found. If
a customer calls the customer support centre with a problem, the call
handler tries to solve it using manuals, product descriptions, and the
database of known problem. If the problem appears to be a bug that
is not already in the database, a new problem report is entered.
Many problems are found during the development process by the
testing group, who enter problem reports directly.

Marketing Engineer. A marketing engineer for the affected prod-
uct reviews the problem report for completeness and attempts to
replicate the problem. The marketing engineer may decide that the
problem is really a request for an enhancement, which is handled by
a separate process. If the bug is genuine, the marketing engineer
determines the location of the problem and assigns the problem
report to the software development unit responsible for that module.

Software Engineer. A coordinator in the development unit as-
signs the problem report to the appropriate software engineer, who
investigates the problem. If the problem turns out to be entirely in
another module, then the engineer passes the request to the engi-
neer responsible for the other module. If the problem is internal to a
single module, the engineer just fixes the module. If the problem
requires changes to multiple modules, the engineer discusses the
changes with the owners of the affected modules (as well as other
interested engineers) and arranges for them to modify their modules.
All changes require the approval of management. Changes to inter-
faces intended for general use require a design review and approval
from a change review board.

Integration and Testing. When the engineer is satisfied with the
change, he or she submits the new code to the testing and integration
group. The integration group then recompiles the changed code and
relinks the system. The kernel is then tested; any bugs found are
reported to the engineer, potentially starting another pass through

ORrcaNizaTION ScIENCE/ Vol. 8, No. 2, March-April 1997

KEVIN CROWSTON Organizational Process Design

the process. Customers are periodically sent the most recent release
of the system. In some cases, they receive a patch for a single change.

References

Abbott, A. (1992), “From Causes to Events: Notes on Narrative
Positivism,” Sociological Methods and Research, 20, 4, 428—455.

Abell, P. (1987), The Syntax of Social Life: The Theory and Method of
Comparative Narratives, New York: Clarendon Press.

Crowston, K. (1991), Towards a Coordination Cookbook: Recipes for
Multi-Agent Action, unpublished doctoral dissertation, Cam-
bridge, MA: MIT Sloan School of Management.

Davenport, T. H. and J. E. Short (1990), “The New Industrial
Engineering: Information Technology and Business Process Re-
design,” Sloan Management Review, 31, 4, 11-27.

Dennett, D. C. (1987), The Intentional Stance, Cambridge, MA: MIT
Press.

Finholt, T. and L. S. Sproull (1990), “Electronic Groups at Work,”
Organization Science, 1, 1, 41-64.

Galbraith, J. R. (1977), Organization Design, Reading, MA: Addison-
Wesley.

Hammer, M. (1990), “Reengineering Work: Don’t Automate, Oblit-
erate,” Harvard Business Review, 68 (July—August), 104-112.
__ and J. Champy (1993), Reengineering the Corporation: A Mani-

festo for Business Revolution, New York: Harper Business.

Harrington, H. J. (1991), Business Process Improvement. The Break-
through Strategy for Total Quality, Productivity, and Competitive-
ness, New York: McGraw-Hill.

Harrison, D. B. and M. D. Pratt (1993), “A Methodology for Reengi-
neering Business,” Planning Review, 21, 2, 6-11.

Kidder, L. H. (1981), Research Methods in Social Relations (4th ed.),
New York: Holt, Rinehart and Winston.

Lawler, E. E., III (1989), “Substitutes for Hierarchy,” Organizational
Dynamics, 163, 3, 39-45.

Lientz, B. P. and E. B. Swanson (1980), Software Maintenance Man-
agement: A Study of the Maintenance of Computer Applications
Software in 487 Data Processing Organizations, Reading, MA:
Addison-Wesley.

Malone, T. W. and K. Crowston (1994), “The Interdisciplinary Study
of Coordination,” Computing Surveys, 26, 1, 87-119.

o __,J. Lee, and B. Pentland (1993), “Tools for Inventing
Organizations: Toward a Handbook of Organizational Pro-
cesses, in Proceedings of Second Workshop on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises, Morgantown,

WV: IEEE Computer Society Press, 72-82.

__and S. A. Smith (1988), “Modeling the Performance of
Organizational Structures,” Operations Research, 36, 3, 421-436.
__,J. Yates, and R. L. Benjamin (1987), “Electronic Markets and
Electronic Hierarchies,” Communications of the ACM, 30,
484-497.

March, J. G. and H. A. Simon (1958), Organizations, New York: John
Wiley and Sons.

Matteis, R. J. (1979), “The New Back Office Focuses on Customer
Service,” Harvard Business Review, 57, 146—159.

McKelvey, B. (1982), Organizational Systematics: Taxonomy, Evolu-
tion, Classification, Berkeley, CA: University of California.

__ and H. Aldrich (1983), “Populations, Natural Selection and
Applied Organization Science,” Administrative Science Quarterly,
28, 101-128.

Mohr, L. B. (1982), Explaining Organizational Behavior: The Limits
and Possibilities of Theory and Research, San Francisco, CA:
Jossey-Bass.

Nass, C. and L. Mason (1990), “On the Study of Technology and
Task: A Variable-based Approach,” in J. Fulk and C. Steinfield
(Eds.), Organizations and Communication Technology, Newbury
Park, CA: Sage, 46—67.

Osborn, C. (1993), Field Data Collection for the Process Handbook,
unpublished working paper, Cambridge, MA: MIT Center for
Coordination Science.

Pentland, B. T. (1992), “Organizing Moves in Software Support
Hotlines,” Administrative Science Quarterly, 37, 527-548.

___, C.S. Osborn, G. M. Wyner, and F. L. Luconi (1994), Useful
Descriptions of Organizational Processes: Collecting Data for the
Process Handbook (working paper 190), available from Center
for Coordination Science, E40-170, MIT, Cambridge, MA 02139.

Powell, W. W. (1990), “Neither Market nor Hierarchy: Network
Forms of Organization,” Research in Organizational Behavior, 12,
295-336.

Rich, P. (1992), “The Organizational Taxonomy: Definition and
Design,” Academy of Management Review, 17, 4, 758-781.

Sanchez, J. C. (1993), “The Long and Thorny Way to an Organiza-
tional Taxonomy,” Organization Studies, 14, 1, 73-92.

Tushman, M. and D. Nadler (1978), “Information Processing as an
Integrating Concept in Organization Design,” Academy of Man-
agement Review, 3, 613-624.

Accepted by Gerardine DeSanctis; received September 1993. This paper has been with the author for three revisions.

OracaNizaTION SciENCE/Vol. 8, No. 2, March-April 1997

175

