Cross-repository data linking with RDF and OWL

Towards common ontologies for representing FLOSS data”

James Howison
School of Information Studies
Syracuse University, NY, USA

jhowison@syr.edu

ABSTRACT

This paper provides an approach to the problem of inte-
grating data from multiple research repositories for FLOSS
data. It introduces semantic web technologies (RDF, OWL,
OWL-DL reasoners and SPARQL) to argue that these are
useful for building shared research infrastructure. The pa-
per illustrates its point by describing parts of an ontology
developed for the integration and analysis of project commu-
nications drawn from FLOSSmole, the Notre Dame archive
and direct collection of data. RDF vocabularies provide a
way to agree on things we agree about as well as a way to
be clearer about ways in which we disagree.

1. INTRODUCTION

Work in the last few years has produced large and growing
public repositories for research data on free and open source
software development, usually called Repositories of Repos-
itories [1]. Repositories such as the Notre Dame Sourceforge
repository, FLOSSmetrics (which succeeds CVSanalY) and
FLOSSmole have adapted the archives of open source devel-
opment for the use of researchers. They have been relatively
useful for saving researchers time (by avoiding redundant
collection) and protecting open source projects against the
pernicious effects of automated collection, and current work
on sharing analyses ought to improve their usefulness (eg
3)).

However these data are side effects of activity; they are not
organized in ways that assist researchers. The Notre Dame
database dumps, for example, are designed to run a high
volume website, while the FLOSSmole datasets are limited
to public facing data. Similarly the repositories, especially
FLOSSmole and FLOSSmetrics, are increasingly collecting
data from multiple repositories, as research interest (and
the open source community) extends away from Sourceforge.
The data contained in the repositories are expressed in the

*Thanks to Andrea Wiggins and Kevin Crowston for their
comments and support. This work was supported by NSF
Grant 07-08437

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WoPDaSD 2008 TFIP 2.13, Milano

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

terms of the particular archive in which they were stored
and little or no documentation about the common seman-
tics of the various fields in the databases, or, just as impor-
tantly, semantic differences between similarly named fields.
The recent NSF Workshop on Free/Open Source Software
Repositories and Research Infrastructures (FOSSRRI 2008)
explicitly called for ways of integrating separate reposito-
ries, while acknowledging that the repositories will and most
likely should remain institutionally separate, for reasons in-
cluding different funding sources and academic credit.

So far FLOSS repositories have taken two approaches to
this issue. The first is documentation, either through com-
mented SQL schema (FLOSSmole) or through a wiki, as
well as through recurrent discussions on mailing lists (such
as ossmole-discuss). These efforts have been ad-hoc, free-
text and, if we are to be honest and judge by the traffic on
our mailing lists, not very successful.

This short paper describes a set of technologies and re-
search work which promise improved semantic understand-
ing of commonalities and differences in data held in pub-
lic repositories. Formal, machine-readable mappings which
describe the semantics of the data available in RoRs are
needed, and the set of technologies to be described below are
now mature enough to provide them. Once the technologies
are introduced the paper turns to describing an initial, par-
tial effort to produce a useful vocabulary and some of the
operations it supports.

2. RDF/OWL BACKGROUND

This section introduces a set of technologies best known
as “semantic web technologies”. They include a data rep-
resentation format (RDF), logical languages for describing
types and relations between types (RDFS and OWL), auto-
mated reasoning facilities (reasoners) and a query language
(SPARQL). The space here is obviously too limited (and our
understanding too preliminary) to provide a comprehensive
introduction, rather we attempt to whet the appetite.

2.1 What is RDF?

RDF is a way of representing knowledge. Knowledge in
RDF is represented by a set of statements, known as triples,
which can be thought of as subject, key and value, but are
morei commonly referred to as subject, predicate and ob-
ject.”.

Tt is crucial to realize that RDF is separate from its serial-
ization, which can be in a number of different XML formats
or in plain text formats, known as Turtle, n3 or N-Triple.
The statements in this paper are written in a very limited

However, before one can talk about things in a formal
way, one needs a way to refer to those things. Things in
RDF are identified by URIs, which are convenient due to
their dual functions as locally controlled unique namespaces
and their function as locators. For example one could write
the knowledge that my name is James Howison (using my
personal website address as a handle for me as a concept) 2

<http://james.howison.name/> foaf :name "James Howison"

A major primary advantage of RDF over relational data-
bases is the use of URIs, which are a great combination
of a globally recognized namespace while being locally con-
trolled. For example many databases may have a column in
a table named project_name but there is no built in way
to differentiate similarly named fields from each other, or to
be clear on how one should interpret the contents. A con-
crete example is that FLOSSmole stores Sourceforge project
names in a column called projects.unixname, while the
Notre Dame Sourceforge dumps store Sourceforge project
names in a table named groups.unix_group_name. By us-
ing URIs to name fields one would at least be able to tell
that different organizations defined these, and, using the
technologies below, find a formal, machine readable way to
map between them. The point is not necessarily to force ei-
ther project to alter their data representations, but to gain
a way to formally describe and therefore use these fields.

Global namespacing is extremely valuable when it comes
to merging and combining datasets; sharply reducing the
potential for namespace collisions (URIs are still completely
different, even if they have similar endings). The use of
URISs also provides a ready made way to identify and aggre-
gate statements about particular entities (because they will
use the same URI). This makes RDF data ideal for unit-
ing knowledge from diverse sources, such as across different
repositories.

The promise of semantic web technologies for cross-repository

research, therefore, is to elaborate a vocabulary appropriate
to representing the many different types and properties in-
herent in the FLOSS datasets, and to describe appropriate
mappings between them. First, however, this paper provides
a brief introduction to the technologies, since they are not
yet well known.

2.2 What do RDFS and OWL add?

A very important and useful type of statement in RDF
is the rdf:type statement. This allows ontologies to specify
that a particular resource (a URI) is of a particular type,
where that type is also referred to as a URI. Thus one can
make the statement that

sf_proj:gaim rdf:type ex:0OpenSourceProject .

Statements that particular URIs (often called ’Individu-
als’ or 'Resources’) are of a type opens up the possibility of
making inferences about that URI based on its type. This

subset of Turtle (which is itself a subset of n3), eschewing
convenient nested notations for reasons of introductory clar-
ity. See a simple Syntax Primer as an appendix

2foaf :name is an abbreviation of http://xmlns.com/foaf/-
0.1/name, which has formally defined semantics (those se-
mantics can, incidentally, be read about by using the URI
as a URL).

is the realm of RDFS (RDF Schema) and OWL (Web On-
tology Language). These are vocabularies, themselves ex-
pressed using RDF, which provide terms with specific se-
mantic meanings. These meanings are understood by rea-
soners, which are software programs which use the state-
ments to generate additional statements (‘entailments’ or
’inferences’), based on a set of given statements (often called
"ground’ data).

For example using RDFS one can state that an Open-
SourceDeveloper is a type of Person and therefore infer that
any URI described as an OpenSourceDeveloper must also
be a Person. Similarly one can infer knowledge about prop-
erties, such as an inverse relationship (other property rela-
tionships include transitivity):
ex_data:someParent ex:isParent0f ex_data:someChild .
ex:isParentOf owl:inverse0Of ex:isChildOf .

gives
ex_data:someChild ex:isChild0Of ex_data:someParent .

OWL takes this type of reasoning further and allows one
to infer knowledge using a powerful set of semantics such
as stating that a Person is an OpenSourceDeveloper if—and
only if—they have checked code into the repository of an
OpenSourceProject. The point, of course, is not to make
this debatable concrete statement, but to have a way to for-
mally describe and refer to such definitions. Finally SWRL
(Semantic Web Rule Language) offers a declarative way to
increase the expressivity of inference beyond the class-based
reasoning of OWL.

RDF, together with RDFS and OWL and their reasoners,
therefore provides a way to build a knowledge base, state-
ment by statement. In the RDF world there is no formal
distinction between the schema and data and both together
are called ontologies (or graphs), but as we transitioned from
relational databases to RDF we found it a useful distinction.
A Vocabulary, built from statements made using the RDF,
RDFS and OWL terms, is like a schema. This vocabulary
can be used to make statements about URIs, which can be
outside the vocabulary namespace, whether they are resolv-
able actual web addresses or not. These statements are more
like data and the URIs are known as Individuals (sometimes
Resources or Instances). To avoid this confusion this pa-
per will refer to the schema-like statements as a vocabulary,
and when data-like statements are included the whole set of
statements will be called a knowledge base.

2.3 Federating datasets with RDF and OWL

Data about things comes from many places, and those
that publish the data use many different sets of terms to talk
about it. Some of these terms are exactly equivalent, most
are different, sometimes obviously, sometimes subtly. The
tools of global namespaces, together with some of the vocab-
ulary from RDF, RDFS and OWL provide formal ways to
talk about these relationships, even when the terms are from
different namespaces. For example, consider two terms to
talk about people’s names: “last name” and “family name”.
These are related concepts, but they aren’t identical because
there are cultures where one’s family name is usually pre-
sented first. Nonetheless they are both types of names, and
knowing that might sometimes be enough.

To express those relationships formally we can imagine
two different totally made up namespaces (foo: and bar:):

@prefix foo: <http://example.foo.com/foo#>
@prefix bar: <http://example.bar.com/bar#>

Each namespace has a term for referring to “last name”
and “family name”:

foo:lastname rdf:type rdf:Property .
bar:familyname rdf:type rdf:Property .

We can express a particular semantic relationship between
these terms using the vocabulary from RDFS. Here we’ll
assert that when people speaking with the bar vocabulary
use the term “last name”, and when people speaking the foo
vocabulary use familyname, we can understand that they
are equivalent; which is to say that all foo:lastname are
the same as bar:familyname, and vice versa.

foo:lastname owl:equivalentProperty bar:familyname .

With the right reasoner, one would now be able to get all
of the names by using a query expressed in either foo: or
bar: vocabulary.

Sometimes, however, one actually wants to retain the orig-
inal semantics while conveying information about the relat-
edness of terms. For example one can formalize the idea
that these are both types of names, without rendering them
equivalent in every way. Here we introduce a third totally
different namespace, which we’ll call ex_vocab and declare
a term in that namespace called name. Now we can write:

foo:lastname rdfs:subProperty0f ex_vocab:name .
bar:familyname rdfs:subProperty0f ex_vocab:name .

Now queries for bar:familyname or foo:lastname will
only return names explicitly declared as such, but queries
for ex:name will return names declared with either of those
terms.

In such ways RDF provides the ability to federate data-
sources, either directly or indirectly through higher level
concepts. These are, of course, only a few simple examples
of ways in which terms might be related.

2.4 Querying using pattern matching: SPARQL

Of course representing and storing data is not much use
without the ability to search or query the resulting knowl-
edge bases. The semantic web community, through the w3c,
has recently standardized a very useful query language (and
protocol) for searching Knowledge Bases. This is called
SPARQL. A SPARQL query is a template with some invari-
ant and some variant elements, against which a Knowledge
Base can be tested and any matching results returned. For
example a list of open source projects could be obtained by
finding a set of matches (bindings) for the variable ?project
in:

SELECT *
WHERE {
?project rdf:type ex:0OpenSourceProject .

and assuming more properties, such a query can be ex-
tended:

SELECT *
WHERE {
?project rdf:type ex_vocab:0OpenSourceProject .
?project ex_vocab:foundedAt ?founding_date .
FILTER (
?founding_date <= "2000-01-01T00:00:00Z""~"xsd:dateTime
)
}

which would return only those projects whose ex:founding_date

was before the start of the year 2000. For a set of statements
to match, the ?project variable has to be the exact same URI
in each place it is mentioned. Unlike SQL there is no need
to specify and manage table joins; there are only statements
(triples) and SPARQL implementations offer extremely scal-
able querying (there are implementations capable of han-
dling 10 billion triples, although see below for scalability
issues and solutions.)

2.5 Advantages for FLOSS representation

We believe that the semantic web technologies offer a good
way forward to increasing the compatibility and documen-
tation of the public data repositories. Our data already
naturally has well-known URIs and our repository projects
have domain names and thus natural namespaces for build-
ing their vocabularies.

These technologies can also support the layering of mean-
ing that is crucial to FLOSS research. For example the
FLOSS data landscape is fortunate to have in it entities
with very concrete existence, such as a SVN commit. There
is little scope for disagreement that such an event took place
(although one might argue about what timezone the time-
stamp was in).

On the other hand, researchers develop and use theories
which go beyond such bland statements. They may want
to state that the email—or patterns of email exchanges—
represent higher level constructs, such as collaboration. Such
further statements could be expressed using the same URI
identifiers for the ‘ground’ but more theoretically informed,
separate, vocabularies for the higher level constructs.

In this way RDF vocabularies provide a way to agree on
things we agree on as well as a way to be clear about ways
in which we disagree (or to put it more politically support
clear discussions of multiple interpretations).

2.6 Mapping between FLOSSmole and the Notre

Dame dataset

Both FLOSSmole and the Notre Dame archive store infor-
mation about projects in Sourceforge, such as their project
unixname (eg gaim or fire). Using the RDF concepts above
it is possible to define a formal mapping which captures the
understanding that these names refer to the same project,
and thereby link any data that each repository has about
that project.

The first thing needed is to map each local representation
to RDF. This requires a URI scheme for each field in the
databases. Since the projects already have functional do-
main names, these are natural places to begin. While URIs,
as names, don’t have to resolve, it is extremely convenient
if they do resolve and ideally as close to a page describing
their semantics as possible.

FLOSSmole does not yet have individual pages describing
its data fields, so the URIs used here do not yet resolve.
The database that holds the unixname information is called
“ossmole_merged”, the table is “projects” and the field (or
column) is “unixname”. Thus we can say that FLOSSmole
defines a rdf:Property called:
<http://ossmole.sf.net/dataset/ossmole_merged/projects#unixname>

or
fm:unixname

By contrast the Notre Dame archive holds data in different
databases and tables. By inspection one can determine that

in the database schema called sf0208 (February 2008) there
is a table called groups and a field called unix_group_name.
Notre Dame’s archive does have pages which provide basic
descriptions of the table schemas, so we can use those direct
URLs (even though they are password protected).
<https://zerlot.cse.nd.edu/cgi-bin/treq.pl?uschema=sf0208¢utable=groups#unix_group_name>

or
nd:unix_group_name

Using such URIs one is able to convert the databases into
a set of RDF statements. For convenience we will use the
Sourceforge project home page as the handle for the Project,
abbreviated according to the prefix in the Syntax Primer
to sf_proj:gaim. We can now show a statement from both
FLOSSmole and the Notre Dame archive:

sf_proj:gaim
sf_proj:gaim

fm:unixname "gaim"""xsd:string .
nd:unix_group_name "gaim"~“xsd:string .

Once the data is represented in RDF we are able to for-
mally describe the mapping. Here we will use a ‘meta’
namespace, which endeavors to describe the concepts at play
in a repository neutral language, thus preserving but en-
hancing the original semantics. We will use the fc: names-
pace (see Syntax Primer):

fc:sf_unixname rdf:type rdf:Property .

And then declare that our two existing properties are sub-
properties of this:

fm:unixname rdfs:subProperty0f fc:sf_unixname .
nd:unix_group_name rdfs:subProperty0f fc:sf_unixname .

All queries for fc:sf_unixname will now return any projects
from either FLOSSmole or NotreDame. It is also possible,
using a combination of OWL statements, like owl:Inverse-
FunctionalProperty (which means that there can only be
a single value for a property) to discover that the project
entities are the same, that they are owl:sameAs, such that
all the statements about either are now statements about
each.

3. THE FLOSSCOMMS VOCABULAR

The previous section introduced the idea of a meta-ontology
able to express semantic similarity between data in different
repositories. We have begun building such an ontology to
integrate communications data from FLOSSmole, the Notre
Dame repository and directly collected SVN log messages
(unfortunately CVSanalY did not store the content of the
log message, or it would have been used). This vocabulary
is called flosscomms (floss communications).

The research project is to discover genres of communica-
tion and to observe the manner in which community work
wends its way through different communication venues and
forms; data from multiple different communication venues is
thus crucial. The ontology introduced here allows the repre-
sentation of communication data from Mailing lists, Forums,
SVN log messages, Release Notes and Issue Trackers. This
is accomplished without losing the important typing infor-
mation that the medium provides. For those familiar with
Object oriented programming the task is similar to ensuring
that each object can respond to the same set of interfaces;
however the semantic web technologies offer a separation of
such semantics from a particular implementation (and global
namespaces).

The ontology allows the simple execution of queries to
answer questions such as “What is the relative media use
over time?”, “Do some venues have faster communication
than others?”, “Do some venues have longer discussions than
others?”. When additional entity resolution work is done to
identify individual participants, one can ask questions like
“Do core developers have consistent, regular participation,
regardless of venue, or do they cycle in and out?”.

Below we outline an example representation of an email to
a mailing list and provide some comments about other com-
munication types; however there is not sufficient space to
cover the entire ontology. The ontology, its documentation
and some sample RDF data are available online®

[Fire-core] TOT does not build on 10.2
From: Jason Townsend <townsend@ma...> - 2004-05-26 07:37

Attachments: smime.p7s

TOT does not build at all on 10.2, and it's more than just updating the
PB project to add new files... iconw.h is not present on 10.2, which

our version of libxml expects. Also, connection.cpp from MSN does not
build on gee 3.1... it can't handle having a pair of a templatized
member function and a string (perhaps we should just make that void *
and cast things?).

Let's try to get this fixed and keep TOT stable. My guess is if we
can't build on 10.2, we can't run on 10.2 either, but | haven't tried a
10.3 binary on 10.2 yet.

-Jason

Figure 1: An example email from Sourceforge

Figure 1 shows an email from a Sourceforge mailing list
(which has been collected by FLOSSmole). There is a lot
of semantic information here, but we will only consider a
few elements: firstly the email comes with a ready-made, if
long, URI as a handle in RDF (the destination of the linked
subject). We have data about time and date at which it
was sent, as well as two identifiers referring to the person
that sent the email: a real name and an abbreviated email
address. We also know that the email was the start of a
thread and it was sent to a particular mailing list (fire-core).
The flosscomms ontology allows us to represent this data in
RDF'. The full URI for the email is very long (it uses Message
ID header from the original email), so we will abbreviate
it as sf_email:1. Note that we can create unique URIs for
things on this page by using the # separator at the end of
the URI; these are purely for convenience in reading related
URIs, adding something in that way creates a completely
different URI.

The core concept in the ontology is that of an Event, which
is simply something that occurs at a particular time (un-
logged in date times on sourceforge are in the PST timezone,
hence -0800).

sf_email:1 rdf:type fc:MailinglListEvent ;
fc:hasTime "2004-05-26T07:37:00-0800"""xsd:dateTime .

Events are associated with an Identifier, such as a user-

name or email address, using the property fc:hasPerformerldentifier.

sf_email:1 fc:hasPerformerIdentifier sf_email:1l#name ;
sf_email:2#email .

*nttp://floss.syr.edu/ontologies/2008/ (note how the
ontologies URI becomes a convenient location to publish it,
and documentation about it).

sf_email:1#name rdf:type

fc:hasContent "Jason Townsend

fc:RealNameIdentifier ;
"“~“xsd:string .

fc:SfAbbrevEmailAddress ;
"““xsd:string .

sf_email:2#email rdf:type
fc:hasContent "townsend@ma...

where both fc:RealNameldentifier and fc:SfAbbrevEmail-
Address are sub-classes of fc:Identifier.

Note here that by using a specific Class for the abbrevi-
ated email addresses, we make possible intelligent reasoning
which takes into account the special abbreviation style that
Sourceforge Mailing lists use (which limits certain kinds of
entity matching).

Some Events—those we were particularly interested in
while builing our model—include textual content that is
communicated; we model the content as a Document that
is associated with an Event; some Events, such as Release
Notes, have two Documents associated with them (Change
List and Release Note), similarly one might argue that an
SVN commit has at least two Documents: the patchset and
the log message. For our email example:

sf_email:1 fc:hasDocument sf_email:1i#doc .

sf_email:1#doc rdf:type fc:EmailAddressContent ;
fc:hasSubject "TOT does not build on 10.2"""xsd:string ;
fc:hasContent "TOT does not build at all ...""“xsd:string .

where fc:EmailAddressContent is a sub-class of fc:Docu-
ment.

Events which include Documents are defined as a special
sub-type of Event called a CommunicationEvent. Here we
use a statement drawing on the OWL vocabulary (owl:some-
ValuesFrom) that says "Any Event that has any associated
Documents is also a CommunicationEvent”. That, when
used with an appropriate reasoner allows us to infer (in ad-
dition to being a fc:Event and a fc:MailingListEvent) that
sf_email:1 is also a fc:CommunicationEvent.

Events are accessible to us because they ended up in an
archive of some type, usually because they were conveyed in
a particular Venue, such as the developer’s mailing list, or
even in a Venue such as a SourceCodeRepository, specifically
a SvnRepository, or even the a FileReleaseSystem like the
Sourceforge release system. In our example the mailing list
for the message is the fire-core mailing list. Sourceforge
provides a useful URI for this mailing list (which we will
abbreviate as sf_email:fire-core):

<http://sourceforge.net/mailarchive/forum.php?forum_name=fire-core>
rdf:type
fc:MailinglList .

Some Venues are threaded venues, meaning that there is
an intermediate level of encapsulation. In our example the
email is the first in a thread, so we can name the thread after
it (Sourceforge actually has full URIs to refer to threads,
which do use the Message ID of the first message in the
thread)

sf_email:1#thread rdf:type
fc:isThread0f

fc:Thread ;
sf_email:fire-core .

And we can state that the particular email is part of this
thread, using the property fc:hasEvent.

sf_email:1#thread fc:hasEvent sf_email:1 .

oad; Thing
L J foArtifact
L4 fo:Document
fo:ChangeMoteContent
fo.EmailMeszageContent
fo.FarumMeszzageContent
fo:ReleazeMateCantent
fotwnloghieszage
foTrackerCommentContent
fo:TrackeriubmissionCantent
fo:SoftwarePackage
fo:SoftwareRevizion
kL fo:Bvent
fo:CommunicationBvent
L 4 fo:MamedBwent
fo:DeveloperListing
fo:DiscussionForumEvent
foMailingLiztEvent
fo:SoftwareReleaseBvent
foSwnCammitBvent
foTrackerCommentEvent
foTrackersubmissionEvent
k fo:ldentifier
L 4 fo:Mamedldentifier
fo:RealMameldentifier
foSRAbBbrevEmaildddressldentifier
fo:5fUserlDldentifier
fo:ifUserMameldentifier
fo:Uniqueldentifier
| 2 fo:Participant
fo:Praject
[fo:Thread
> foWaluePartition
[3 fovenue

Figure 2: This shows part of the full class hierar-
chy for flosscomms, focusing on Events, Documents
and Identifiers. It is a screenshot from Protege, an
ontology editor.

Of course the flosscomms vocabulary defines inverse rela-
tionships, so if we use an appropriate reasoner, we will infer
inverse the reverse relationships too:

sf_email:1 fc:isEventOf sf_email:1#tthread .
sf_email:1#thread fc:isThreadOf sf_email:fire-core .

Finally we wish to state that this mailing list belongs to
a particular project, which has as its unixname, "fire”:

sf_proj:fire rdf:type fc:Project ;
fc:sf_unixname "fire""“xsd:string ;
fc:hasVenue sf_email:fire-core .

So far this knowledge base is nice and accurate, but is a
little clumsy for querying. For example to get all the Events
associated with the fire project one would have to query
using a SELECT clause like:

SELECT 7event

WHERE {
?event fc:isEventOf ?thread .
?thread fc:isThread0f ?venue .
?venue fc:isVenueOf sf_proj:fire .

}

when it would be much more convenient (and totally se-
mantically true) to query for every event, regardless of its
venue (or thread) using:

SELECT 7event
WHERE {
?event fc:isEventOf sf_proj:fire .

}

This can be achieved in a number of ways. Currently an
extension to the flosscomms ontology uses the SWRL (Se-
mantic Web Rule Language) but one could also use OWL
2.0’s Role Chains to state that “Any Venue with a Thread
has all the Events of its Threads” and “Any Project with a
Venue has all the Events of its Venues”; and with an appro-
priate reasoner additional RDF statements would be gener-
ated for each event such that the shorter query above would
work. Since some types of Events, such as Release Notes,
are related to their projects by fairly long links (a Project
produces a Package which has a Revision which is released
in a ReleaseEvent, which has an associated ChangeNote
(phew!)), declaring such relationships is very convenient and
is a real payoff for the modeling work.

3.1 A note on Entity Resolution

Conceptually Events are (usually) performed by a per-
son, and that person can be modeled as a Participant in
the project. Yet when we encounter the archives we do not
directly known who performed the event; rather we find an
Identifier, such as an email address (or perhaps a set of iden-
tifiers such as an SfUserld or SfUserName). However usually
we want to know which actual person performed a set of ac-
tivities, so we want to link the Identifiers to a Participant,
using fc:isldentifiedBy, and thereby Participants to Events,
using fc:didPerform.

That is simple enough so far. However some types of
Identifiers are unique, while others are not. For example
it is legitimate to assume that two events, taken from a
Sourceforge archive, associated with the same Sourceforge
user name, were in fact performed by the same person. On
the other hand it would be foolhardy to assume that two
events associated with the same real name part of an email

address (such as "John” or "Pradeep”) were necessarily the
same person. We simply don’t know enough to make that
assertion. This knowledge can be expreseed in a number of
ways, including creating sub-types of Identifier:

fc:SfUserNameldentifier rdfs:subClass0f sf:Uniqueldentifier .
fc:RealNameIdentifier rdfs:subClass0f sf:NonUniqueIldentifier .

ex:someldent rdf:type fc:SfUserNameldentifier ;
fc:hasContent "johnuser"~“xsd:string .

ex_data:someOtherIdent rdf:type fc:RealNameldentifier ;
fc:hasContent "John""“xsd:string .

This type of knowledge is very useful for managing what
type of assertions can be made about whether or not the
same Participant can be associated with a set of Identifiers,
and could therefore be understood to be the same Entity.
For example RealNameldentifiers, while not Uniqueldenti-
fiers, are not devoid of semantics and there are algorithms
for matching (although we’ve found that the open source
domain throws up particular challenges in that regard). In
any case all that can be said here is that entity matching
can leverage such semantics when they are presented using
RDF typing.

However entity matching is undertaken—whether using
Uniqueldentifiers or through fuzzy matching of NonUnique-
Identifiers—when Participants are found to be linked this
can be expressed can be expressed in RDF using owl:sameAs,
which was introduced above:

ex_data:partFromEmail owl:sameAs ex_data:partFromSVN .

This is a very powerful statement. If that is included
in a set of statements passed to a reasoner, the reasoner
will generate statements such that anything that is true of
ex_data:partFromEmail is also true of ex _data:partFromSVN
(and vice versa). In this manner one can accomplish En-
tity Resolution using RDF statements and link Participants
across differing Venues.

Such entity matching enables really interesting things like
classifying Participants into Core, Peripheral or Active User,
based on the types of Events they have undertaken (which
is similar to the achievements reported in [2]). Of course
such definitions would be entirely debatable but by declar-
ing new namespaces for them and publishing the definitions
or workflows that create the classifications we would better
know where we agree and be clearer about where we do not.
The point is that an RDF ontology allows the representa-
tion of underlying ground data from different sources using
the same vocabulary and thus supports clear definitions of
research concepts, as research proceeds.

3.2 Future additions

The flosscomms vocabulary is a work in progress but is
particularly tailored to Communication Events. Clearly there
are other types of events which are of great interest, such as
when a project is founded and periodic developer listings, or
even leadership changes (however theoretically defined), to
name just a few. One would also want to develop vocabu-
laries to represent data about project performance, such as
the ubiquitous measures of downloads and pageviews. There
are many different sources of such data, but using a full URI
to name the datapoint enables researchers to be clear about
what technique they are using (for example figures scraped
from Sourceforge vs analysis of the logs of a Linux distribu-
tion).

3.2.1 Integration with existing ontologies

Close readers will have noted that all the Classes and
Properties discussed in this paper are expressed in the same
namespace (fc). This was done mainly because we were
learning while doing and wanted to have predictability in
reasoning (without simultaneously learning the implications
of other vocabularies, especially their interaction). However,
there are a large number of generic and specific available vo-
cabularies that ought to be integrated with the flosscomms
and its successors vocabularies (after all open source projects
are not the only things with email lists or names!).

There are generic ontologies, such as Friend of a Friend
(foaf), which provide vocabulary for people and relation-
ships, as well as ontologies for things such as temporal pe-
riods (temporal) from Instants to Intervals. As researchers
work with more theoretically informed concepts they may
wish to use statements from the SKOS vocabulary (this is
particularly apposite for hierarchies of Codes for content
analysis).

More specifically there are existing domain ontologies that
ought to be used. Description of a Project (DOAP) is al-
ready supporting a range of statements specifically about
open source projects (such as the location of their bug tracker
and release system as well as old names etc). DOAP increas-
ingly supports collaboration amongst systems designed to
help discover open source projects and by using real-world
URIs where-ever possible our data repositories can become
part of this semantic web.

Similarly there are existing ontologies for describing Is-
sue Tracking systems (such as EvoOnt). There is also the
SIOC ontology, which provides vocabulary for describing on-
line communities and includes quite similar things to floss-
comms. Finally researchers other than us have already de-
veloped OWL ontologies for describing open source artifacts,
such as the padme.owl* ontology, developed by Chris Jensen.

The beauty of RDF and OWL, however, is that the terms
in the flosscomms vocabulary, or future vocabularies, do not
necessarily have to be changed. Rather as one discovers the
semantic relationships between the vocabularies one simply
adds statements conveying that understanding and allows
reasoners to use those to draw conclusions. For example if
one believes that the flosscomms concept of a Project is iden-
tical to the DOAP concept of a project (ie that all fc:Project
are also doap:Project) then one can transform a Knowledge
Base simply by adding the single statement:

fc:Project owl:equivalentClass doap:Project .

And with the appropriate reasoner any RDF data ex-
pressed in either vocabulary will be accessible.

3.3 Performance Issues

The picture painted above, especially the use of reasoners
and SWRL rules, perhaps paints too rosy a picture of the
state of the art in Semantic Web technologies, especially
using open source components.

As a data point, we have collected all the Communica-
tionEvents from FLOSSMole (Mailing Lists), Notre Dame
(Tracker Items, Forums, Release Notes) and SVN logs for
two FLOSS projects (gaim and fire) and represented the
data using the ontology described in this paper. In total
there are over 158,000 Events, which before reasoning gen-
erate about 2.5 million RDF statements. After reasoning

4http://rotterdam.ics.uci,edu/development/ontologies/padme.owl

this expands to 9.5 million RDF statements. This is just
the data from two open source projects.

Currently we store the realized (ie after reasoning) ontol-
ogy using the SDB store from the open source Jena project,
using a MySQL backing store. Querying this using SPARQL
is fine, performance wise (on a Macbook with 3G ram), re-
turning results such as the Events for a month (that is using
a FILTER) in sub 10 seconds and almost instantly using a
1G query cache for MySQL.

However we did face significant performance issues when
applying a reasoner to our knowledge base. This is because
the reasoners available (such as Pellet or the Jena set of rea-
soners) are very RAM hungry; they hold the entire graph
(set of statements) in memory while generating the infer-
ences. Needless to say this was too much for a laptop, even
with 3G of RAM. After much experimentation we shifted
this component of the work to Amazon’s EC2, which pro-
vides Linux instances with 15G for 80 cents an hour. Of
course others could and will use supercomputing resources
provided by groups such as NSF’s TeraGrid; but the EC2 op-
tion is a low overhead, quick start, approach. Once the rea-
soning is complete, the database can be transferred back to
local operation (or made available for community querying).
In any case this type of reasoning is a run-once, query-many
type of operation. That said as the community experiments
with new definitions, based on this ground data, substantial
memory resources will be required.

Scalability of the semantic web technologies to “web-scale”
(ie able to encompass data available throughout the world
wide web) is a very active area of research. To give some
idea of the current capabilities of commercial products, the
AllegoGraph system is free of charge for users up to 50 mil-
lion statements, and they claim high performance with up
to 10 billion triples.

4. CONCLUSIONS

The significant progress made in collecting and making
available Repositories of Repositories for research on FLOSS
and its development can be extended through the use of se-
mantic web technologies. Specifically it is possible to rep-
resent data drawn from multiple RoR (and directly from
the field) using an aligned vocabulary. Such vocabularies
can then form the ’ground’ data for analyses such as En-
tity Resolution. Semantic Web technologies are well suited
for FLOSS data, which already draws on URIs. Importantly
they do not demand pre-agreement between researchers, since
relationships between vocabularies can be expressed and they
offer integration of multiple sources of data.

APPENDIX
A. SYNTAX PRIMER

The example RDF in this paper are written with a sim-
ple syntax that is valid Turtle (and n3). Each element is a
full URI, but for readability one is able to define a prefix
abbreviation. Abbreviated URIs are written without an-
gle brackets, while full URIs are always written with angle
brackets.

Qprefix fc:
<http://floss.syr.edu/ontologies/2008/flosscomms-basic.owl#> .

Thus fc:Event stands for the full URI:

<http://floss.syr.edu/ontologies/2008/flosscomms-basic.owl#Event>

Similarly the ex_vocab: prefix is just a made up prefix to
denote example vocabulary (schema-like) statements, and
ex_data: is a made up prefix to denote example data-like
statements.

The example statements should be read as including these
prefix definitions, as well as as well as the ’standard’ prefixes
and the final special prefix for typing the literal data (ie the
content inside quote characters), which makes use of the
data types defined by xml schema (which is a good example
of the re-use that RDF makes possible).

@prefix ex_vocab: <http://example.com/vocabulary#> .
@prefix ex_data: <http://example.com/dataset#>
@prefix sf_proj: <http://sourceforge.net/projects/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
Q@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

Each statement ends with a single period, but the subject
(ie the first part of the triple) can be ‘re-used’ by using a
semi-colon after the object (but this is still two, or more,
separate statements). Hopefully the indenting in the layout
makes this clear.

By convention Classes are capitalized and CamelCased
(ex:SomeClass), Object Properties are CamelCased but writ-
ten with a small first letter (ex:someObjProperty), and Data
Properties (those with literal subjects) are written with all

[2] S. Christley and G. Madey. Global and temporal
analysis of social positions at sourceforge.net. In The
Third International Conference on Open Source
Systems (0SS 2007), IFIP WG 2.13, Limerick, Ireland,
June 2007.

[3] J. Howison, A. Wiggins, and K. Crowston. eResearch
workflows for studying free and open source software
development. In Proceedings of the Fourth International
Conference on Open Source Software (IFIP 2.13), 2008.

lower letters, with words separated by underscores (ex:some_data_prop-

erty).

B. TOOLS AND RESOURCES

There are many useful tools and resources available for
learning more about ontologies. We developed our Vocab-
ulary in Protege (using both 3.4 and 4.0), which is a Java-
based GUI editor with built in reasoners and visualization
capability. The Protege Pizza Tutorial is an excellent way to
come to grips with the capabilities of OWL. The best thing
we ever did was abandon attempts to read the RDF /XML
representations and learn Turtle/N3 (which are plain text
formats).

As far as tools go, we have found the open source Jena
project to be the most capable API, drawing on the Java
APIT to read, build and query our Vocabularies and Knowl-
edge Bases. Using Jena, we wrote adapters to turn the
FLOSSmole mailing list tables, the Notre Dame XML and
the SVN log XML into RDF statements. For reasoning
we have primarily used the Jena provided OWL_MEM._-
MICRO_RULE_INF reasoner, which performs well with large
numbers of individuals (we also used the Pellet complete DL
reasoner). For data storage we have primarily used the Jena
SDB engine, which is a database backed store optimized for
SPARQL queries. We have also explored the AllegroGraph
commercial offering (which has a gratis version), which ap-
pears to have very interesting SNA and temporal reasoning
capabilities built in.

C. REFERENCES

[1] I. Antoniades, I. Samoladas, S. K. Sowe, G. Robles,
S. Koch, K. Fraczek, and A. Hadzisalihovic. D1.1 study
of available tools. EU Framework deliverable,
FLOSSmetrics, 2007.

