Coordination in OSS 2.0: ANT Approach

Sangseok You Kevin Crowston
HEC Paris Syracuse University
you@hec.fr crowston @syr.edu

Abstract

Open source software projects are increasingly
driven by a combination of independent and
professional developers, the former volunteers and
the later hired by a company to contribute to the
project to support commercial product development.
This mix of developers has been referred to as
OSS 2.0. However, we do not fully understand the
multi-layered coordination spanning individuals, teams,
and organizations. Using Actor-Network Theory
(ANT), we describe how coordination and power
dynamics unfold among developers and how different
tools and artifacts both display activities and mediate
coordination efforts. Internal communication within an
organization was reported to cause broken links in the
community, duplication of work, and political tensions.
ANT shows how tools and code can exercise agency and
alter a software development process as an equivalently
active actor of the scene. We discuss the theoretical and
practical implications of the changing nature of open
source software development.

1. Introduction

Open source software (OSS) developmentﬂ
has traditionally been viewed by researchers as
a collaborative outcome of individuals working
independently. In this view, individual developers,
dispersed around the world, work together toward a
software product as a common goal. OSS development
is interesting because it can be successful despite
the absence of a formal structure and leadership
in collaboration with dispersed individuals. The
distributed nature of OSS development poses interesting
questions and challenges, such as discontinuities in
work, low coherence in work settings, and difficulties
in developing shared mental models among participants

I This movement is sometimes referred to as free/libre open source
software to acknowledge the distinctive motives of the free software
community.

Jeffrey S. Saltz Yatish Hegde
Syracuse University Syracuse University
jsaltz@syr.edu vhegde @syr.edu

[L]. Research in this tradition has shown, for example,
that altruistic motivations are a major driving force that
attracts individual developers and keeps them engaged
throughout the project lifecycle [2, 3, 14]].

More recently, there has been growing recognition
that OSS development has been transformed by
the involvement of actors other than individuals.
Specifically, researchers are recognizing the important
role of company teams that support a community
and benefit from the collective work outcomes
[S]. Especially in large OSS communities (e.g.,
Apache Spark or Hadoop), many individual developers
are deployed to the community by their employer
to represent and advance the company’s interests.
Fitzgerald referred to such transformation as OSS
2.0, with an emphasis on the impacts of company
involvement [3]].

We are interested in how the involvement of
companies has changed the process and structure of
collaboration in these communities. Despite recognition
of these changes, research has not completely addressed
the nature of the emergent processes, which may not be
explained by our traditional view on OSS development
as individual participation. In this paper, we focus on
coordination in OSS development that embraces not
only individual developers but also company teams.
We define coordination as managing dependencies [6].
The addition of companies and company-sponsored
teams engenders new levels of dependencies beyond
the individual level, implying the need for coordination
across individuals, teams, and organizations.

The addition of company teams also alters the roles
of technological artifacts in OSS development. OSS
development, as a largely distributed sociotechnical
system, relies heavily on technological artifacts, such as
communication tools, source code control systems, and
the code itself [7, 8]. Although how distributed teams
handle dependencies is well studied in the previous
work, research still lacks evidence on coordination in
OSS 2.0 [9} [1]. Moreover, by adding the corporate
players to the scene, coordination in the recent OSS

mailto:you@hec.fr
mailto:crowston@syr.edu
mailto:jsaltz@syr.edu
mailto:yhegde@syr.edu

development warrants an investigation with a new
approach. Therefore, we pose two research questions
for this study as follow:

1. RQI: How do individual developers, company
teams, and companies coordinate in OSS 2.0?

2. RQ2: Given these different levels of interaction,
how do technology artifacts support the
coordination among the developers?

To answer the research questions, we employ
Actor-Network Theory (ANT), which addresses the
interplay between the social and the technical in a
sociotechnical system [[10]. ANT is suitable to identify
the emergence of new actors and the actor-networks
across different levels of interactions. Besides, ANT
treats objects equally as an actor [11,/10], thus providing
helpful analytic perspectives from which to investigate
the roles of technological artifacts.

By looking through ANT, we examined how
dependencies were managed among participants at
different levels and what roles technological artifacts
played in OSS 2.0. We report findings from 20
semi-structured interviews with participants in several
OSS communities. We discovered several kinds of
actors in the OSS communities. Among those, company
teams generated boundaries within themselves which
engendered gaps in coordination across the community
as a whole. Also, we found that artifacts like code
were centerpieces of coordination by exercising agency
over human actors. Therefore, a significant contribution
of this paper is the taxonomy of several actors and
their influence network for coordination across different
levels mediated by artifacts.

2. Background

2.1. Coordination in OSS

OSS development teams have been studied by many
scholars (e.g., see [12, [13] for reviews). They have
been viewed as a unique context to study coordination
in distributed work in particular [14]. OSS projects
are characterized by its “open source” license, which
allows inspection, modification, and redistribution of
the source code of the software free of charge [1].
The unique “open” nature of OSS engenders numerous
challenges in coordination among developers. For
instance, OSS is often developed by distributed teams,
whose team members are located around the world and
meet infrequently, relying on communication tools such
as videoconferencing, chats, and source code control
systems [13}114]].

Crowston and colleagues [l aggregated the
collective effort in the research and built a theory
to explain the coordination mechanism in such
contexts. For instance, in their coordination theory,
they highlighted that distributed developers manage
dependencies through sociotechnical affordances of
various artifacts. For example, documents, including
source code and bug reports, can provide visibility
and accountability of the current state of the work and
inform developers of what can be done next, which is
referred to as translucency [1]].

Early OSS developments were often driven by
voluntary individuals working independently [15} [14].
Thus, coordination in OSS has been understood mainly
as how distributed individuals manage dependencies [1].
For example, Howison and Crowston [16] proposed
superposition as a core mechanism of OSS projects, by
which individual developers contribute small chunks of
code (i.e., atomic commit) to the existing codebase that
build on existing functionality.

However, recent trends in OSS projects demonstrate
that company teams are playing much bigger roles in
the development than before [9,[17]. Indeed, companies
are shown to reduce development cost by open-sourcing
the effort and become more innovative by engaging with
OSS communities [3]. Germonprez et al. [[18]] found that
software designers from companies can benefit from the
engagement with OSS communities for more productive
and creative design for their products. Also, Maenpaa et
al. [19]] viewed the OSS communities as a hybrid system
that embed companies and governments as a part of a
large software ecosystem.

Despite the increasing involvement of company
teams in OSS projects, research still lacks empirical
evidence on how the different kinds of actors in
the OSS projects manage dependencies to turn the
communal effort into a software product [20]. Part
of the reason is the complexity in the collaboration
among the different actors and stakeholders in OSS
communities [20]. The addition of companies in OSS
would change coordination because they often have
different motivations and work styles not aligned with
a given OSS community [3]. However, understanding
the collaboration network in OSS projects are often
incomplete or not include important actors [21), 16].
Thus, in this paper, the aim is at better understanding
OSS projects by identifying important actors in the
scene and mapping them in a complex coordination
network.

2.2. Actor-Network Theory Approach

We employed an actor-network approach to
understand coordination in OSS projects. Originated
from science technology studies (STS), actor-network
theory has been a useful lens to look through the
relationships and dynamism in sociotechnical systems
by illustrating their interests, desire, and agency (e.g.,
[22]). The ANT approach enabled sociotechnical
scholars to discover new actors and their behaviors
[L1]. Another characteristic of the ANT approach is
that the approach ascribes agency to objects and treats
them as an equal actor in a given actor-network [10].
This allowed scholars to view technological artifacts
as non-human actors and to focus on the technological
affordances that enact agency [[L1]].

We believe that the ANT approach is not only
suitable but also useful for studying OSS projects for
several reasons. First, given the increasing presence
of company teams in OSS projects, the ANT approach
allows us to identify them as a new actor and highlight
their behaviors and agency. Second, although previous
studies emphasized the role of technology artifacts,
such as source code control systems and communication
tools, in open collaboration, they were viewed only as
tools that convey social cues [7] rather than as actors
in their own right, which is the perspective of ANT.
Lastly, there is dearth of studies that employed the
ANT approach to explain coordination in OSS projects.
One exception is Ducheneaut [22], which illustrated
socialization processes of new participants in an OSS
community.

3. Method

3.1. Data Collection

We conducted semi-structured interviews to obtain
an in-depth understanding of coordination in OSS
communities. Our research team recruited a total
of 20 developers from several OSS projects across
communities, including some large communities like
Apache, Mozilla, and Linux. Because of the exploratory
and inductive nature of the study, our goal was to
develop a diverse sample of interviewees that spanned
many contexts, rather than a representative sample of
some population.

The recruitment of the subjects was two-fold. In
the initial stage of the study, we employed a snowball
approach by getting referrals from relevant conferences
(e.g., ApacheCon). Four subjects were recruited
at this stage. These initial points of contact were
used to develop and pilot test the interview protocols
and to identify major actors in OSS communities

(e.g., contributors, committers, and project management
committees) and tools (e.g., GitHub, JIRA, and emails).

In the main part of the study, we posted recruitment
solicitations to developer mailing lists of projects with
varying degrees of community size, activity levels, and
history. Sixteen subjects were recruited through this
method. The interviews were conducted based on the
protocol developed from the initial interviews, which
included questions regarding subjects’ professional
background, general descriptions on OSS projects they
contributed, tools used for individual and teamwork,
and how they managed dependencies within and outside
their team. FEach of these interviews lasted about
an hour either in person or online. Interviews were
audio-recorded and then transcribed.

Our data are diverse regarding subjects’ tenure in
OSS communities, employment type, and projects.
Details of the subjects are shown in Table 1.
Our subjects were involved in the following OSS
communities: Apache projects (Jena, Stanbol, Clarezza,
Fedora Commons, Islandora, Lucene,Spark, Hadoop,
HBase, ZooKeeper, BookKeeper, Hive, Derby), iPython
Notebook Extention, Jupyter Environment Kernels,
Pypandoc, Pandas, Riotjs, Drupal, TensorFlow,
Samvera, Open ONI, OpenCV, Meme generator,
VMware vSphere Integrated Containers, and jQuery
Plugins. To provide anonymity, we do not show
subjects’ specific affiliations and in quotations, we use
pseudonyms in place of the names of individuals and
companies.

3.2. Data Analysis

The transcripts were coded based on a grounded
theory approach to identify themes emerging across
the subjects [23]]. The initial coding was an iterative
process as we tried to identify themes related to actors,
their interactions and networks, and patterns of them.
Through this process, we discovered more than 140
themes. We then used the open coding to obtain 18
high-level categories and generate running hypotheses.
Our research team discussed consistently throughout the
data analysis. The analysis continued until we believed
that the data was theoretically saturated.

4. Findings

In this section, we first describe several kinds of
actors, which include human actors and non-human
actors. We then illustrate the actor-networks, as
emergent relationships of the actors, to unpack the
coordination mechanism in the OSS communities.

Table 1. List of Study Subjects

Subject OSS Experience Full Time
P1 15 years Yes
P2 3 years Yes
P3 4 years Yes
P4 12 years Yes
P5 3 years Yes
P6 6 years Yes
P7 5 years Yes
P8 7 years Yes
P9 12 years Yes
P10 1 year Yes
P11 6 years No
P12 7 years Yes
P13 2 years Yes
P14 8 years Yes
P15 5 years Yes
P16 5 years Yes
P17 1 year No
P18 19 years Yes
P19 3 years No
P20 2 months No

4.1. Human Actors

In ANT, an actor, derived from a semiotic definition
of actant, is defined as an entity that acts or grants
other’s activity [10]. In that an actor can be literally
anything if it is the source of an action [10], actors can
include both human and non-human entities. For human
actors, we identified that there are three categories
in multiple levels: individuals, company teams, and
organizations (i.e., companies). The three categories
are in a hierarchy, in which an individual actor may
be affiliated with a company team in an organization.
The reason why we highlight these actors distinctively
is that actors in each level are found to manifest
unique influences on the project based on their interests,
motivations, and resources at different levels.

4.1.1. Contributors and Committers Following
the definition by Apache Software Foundation (AS,
a contributOIE]is “anyone who wants to contribute (code,
documentation, tests, ideas, anything!) to any project.”
All subjects were a contributor at least in one OSS
project. In our data, code and feature ideas were
more prominent than other types of contribution. Most
participants in an OSS project begin as contributor. Our

Zhttps://www.apache.org/foundation

3Contributors are also referred to as developers in some cases (e.g.,
Apache Software Foundation), but we use the term developers as
an inclusive term for individuals who are involved in OSS projects,
regardless of the level of contribution and rights.

subjects identified themselves as contributors based on
the amount of effort put forth and the size of the changes
in code accepted and merged to the system. P20 had
a clear role perception: “I think my role was to code
for the project. I am the contributor, I would say.
Whatever ideas they give, I have taken inputs and [
made sure it’s gonna be user friendly to them. I would
say I'm a contributor.” P9 also identified himself as
a contributor in one project by “help[ing] with actual
code, identify[ing] bugs, and help[ing] to fix those
bugs.”

On the other hand, committers are individuals who
have permissions to make changes to a shared source
code of an OSS projec Their rights regarding the
source code involved both writing code and accepting
changes from contributors submitted through code
repositories (i.e., making commits). In our data, there
were eight subjects who were committers in at least one
OSS project: P1, P2, P4, P5, P7, P9, P12, and P14. The
committers in our data had more substantial involvement
and exercised more power in their projects than
contributors did,, by fulfilling several responsibilities:
selecting issues to solve, reviewing changes submitted
by contributors, accepting and rejecting the changes,
writing code by themselves, and communicating with
other developers (P2, P4, and P5). As P9 described,
committers handle “virtually every one of the pull
requests that goes into the project, I'm either committing
myself because I wrote it and somebody else is reviewing
it, or vice versa”.

These roles were not exclusive in a person, and those
who work for multiple projects may have different roles
by project. For instance, P18 has been working in
OSS projects for 19 years, and his role involved being
on the project management committee (PMC) for an
Apache project while still contributing code to another
OSS project as an individual contributor. The multitude
of involvement in projects is common across our data
and is more prominent among people who have longer
tenure in the OSS communities (e.g., P1, P3, P4, P9,
P11, P14, and P18). P3 mentioned having membership
in multiple projects: “The [Project A] is the one I'm
heavily involved in and the [Project B] is the one that
I’m a small time contributor for.” P11 was also involved
in several projects and explained different levels of
ownership and involvement: “There have been some
projects, which I have worked in small teams, but here,
most of them are my own projects.”

4.1.2. Company Teams In this study, a company
team refers to a group of people in a company who
work together on the same module of a software product.

“https://en.wikipedia.org/ wiki/Committer

Our subjects had responsibilities for a component of a
software product, which was closely related or benefited
from the collective effort of development in an OSS
community. Thus, not all members of a company team
were involved in the project to the same degree of time
and the amount of code contribution. A company team
in this study should be conceptually distinguished from
anetwork of people collaborating on the same module of
an OSS project with a perceived team membership but
without a common affiliation. Among twenty subjects,
sixteen indicated that they were paid to work on an
OSS component of a product of their organization (see
Table 1). The other four subjects were not affiliated
with a for-profit organization and contributed to OSS
communities voluntarily.

Team size varies from small with 3-4 people (e.g.,
P2, P10) to large with 7-8 people (e.g., P8, P13,
P16). Our subjects were a point of contact between
the companies and the projects. They were more active
in the OSS community than other team members and
worked on the front line for their team in the community.
For instance, P10 mentioned different engagement with
OSS communities by team members: “It’s normally
just two, or three. ... There will be one actually from
the team working closely with me and then some of the
other guys, it’s just whenever we have some questions
we just randomly discuss and occasionally seeking for
their help.”

Company teams had internal meetings to determine
what to do for their product. In some cases, company
teams employed the Agile methodology for their
product development by having multiple scrum teams
whose members worked closely in OSS communities
(P1, P9, P13, and P10). The internal meetings included
discussions on what to do, scheduling, and reviewing
code before submitting to the OSS codebase. Thus,
contributions by the company teams were aligned with
the company’s technical interests and resources such
as time and manpower (P1, P10, P18). P10 explained
the internal communication with team members outside
the OSS community: “Our main goal is not to
make contributions, but we make contributions during
our process or progress. We definitely have some
discussions with team members because you need to
let them know we need to purchase some time on
contributing and what we will contribute. So basically
the discussions happen all the time.”

Companies are relatively less visible, but still
appeared to play big roles behind the scene. Companies
have been viewed as sponsors of OSS projects, but in
our study [9], they seemed to exercise more agency
than sponsors in the background. So, we treated
them as an entity that possess their own collective

characteristics and intentions. For instance, teams
and companies perceive ownership of certain module
of an OSS project in case the module is critical to
their product. An experienced contributor/committer P1
provided an illustrative example: “Often times different
subsystems are owned by different parts of whoever is
the ... like in the case of [Product A], that’s owned by
[Company A], they have employees who work on it full
time and they have their own division of work.”

4.2. Non-Human Actors

Code and tools were identified as significant
non-human actors in OSS communities. They emerged
as integral parts in understanding coordination in OSS
communities. Code itself was found to be a conduit
that delivered signals on what needed to be done and
illuminated the power dynamics among human actors.
Tools and documents produced during the use of them
became actors based on their technical affordances and
functionalities, such that pull requests and notifications
enabled highlighting code changes and discussions
among developers.

4.2.1. Code Code itself was found to play significant
roles in coordination in OSS communities. On the
one hand, code was the main artifact as an outcome
of the collective effort in an OSS community. On
the other hand, we discovered that the code acted
through its affordance of delivering meaningful signals
for coordination.

First, code changes signified what needed to be done
and implied the layers of contribution by the community
members. By embedding bugs and errors, code was
the immediate source for contributors to find an area
to work on. We discovered that starting a contribution
from reading the codebase was particularly helpful for
low-hanging fruits like small bugs and typos identified
directly from the code, to be corrected (P2, P3, P9). P1
identified himself as a “code janitor”, which “hooked
me into the project and got me going”. Along with
source code control systems, code was an indispensable
actor by containing histories of the past work and
awareness of what was being done.

Furthermore, the code filled a role in delivering cues
on the work and stimulating actions from developers
by the way it is written. This made the code a major
actor in the OSS communities and the one of first places
where developers went for coordination. For instance,
P9 mentioned the self-sufficiency of the code and its
usefulness for next actions: “[T]he code itself is not
well-documented anywhere except in the code. You do
have to get in there and trace through the code to figure

out what’s going on. If there’s something you need to
change, you have to trace through the code to figure out
how to change it.”

Second, structures and norms to write code varied
by OSS community, and the code enforced contributors
to follow the community protocol (P4, PS5, PI1).
P11 defined: “Good code is well commented, it is
modularized, so just by looking at the functions, function
names, it’s written beautifully in a way thats well
indented, the variable names are nice, the use of
underscores and capital letters, everything is good.”

Interestingly, the norm to write good code was acted
differently between committers and contributors. This
seemed related to the power that committers possessed
over contributors, such as prioritizing, filtering, and
selecting issues to solve and approve to merge.
Although committers were expected to write better code
for projects, contributors believed that committers were
free from the good code requirements due to the bigger
power. P4 said: “As a committer I can write some shit,
and commit it. Which is where I think a lot of the crap
code comes from. Contributor code is a small set of
the overall codebase, because committers write more
code than contributors, but I bet it’s the better code on
average.”

Third and the most important, the malleable nature
of the code enabled the collaboration among the
developers through the loosely structured coordination.
In OSS communities, code was a public, collaborative
artifact, which was viewed as an organism that grew
and evolved over time by embracing mistakes, errors,
corrections, and practices from different people with
unique interests and skills. P16 summarized the “code
malleability”: “All software has a number of bugs even
the commercial ones. But one of the benefits of using
OSS is that we can look at the source code to see the
cause of a problem and be able to fix it. So, I think it is
not about how complete the software is but the important
thing is the accessibility to the source code.”

4.2.2. Tools Subjects reported on many tools that
shaped OSS development. First, Jira and similar
tools provide various collaborative development
functionalities, including issue tracking, bug tracking,
and project management features. Jira was the most
popular tool observed in our data: larger and mature
projects like Apache Spark and Hadoop relied more
on Jira to manage issues and communicate among
developers.

Issue tracker was the core functionality in Jira,
where contributors suggested an issue (i.e., bug fixes
and new features) to the community. P3 emphasized
the importance of the issue tracker as a starting point

of a contribution that provides awareness of other
developers’ activities: “I think that’s always the best
place to start. It is like, look at what other people
have found and see if there is anything that interests
you that you think fits with your skill level or your level
of comfortability with the software and go from there.”
However, despite the heavy use of the issue tracker
in Jira, subjects also expressed that the overwhelming
volume of issues stacked up and were not effectively
controlled by the limited number committers (e.g., P3,
P4, P6, P8, P15), which resulted in uneven distribution
of committer attention to the issues.

Next, GitHub was gaining presence in projects in
our data. Smaller and younger projects were adopting
GitHub for its advanced git (a source code version
control system) management. GitHub also provide a
communication medium, e.g., pull requests, through
which a contributor submitted a code change for a
review (P2, P7, P10, P11, P14, P17, and P19).
Pull requests were found to be central in the use
of GitHub. They provide a notification of changes.
They are a major communication channel between
committers and contributors and a place to discuss
the submitted changes with other developers. GitHub
allowed developers reviewing a pull request to comment
in line, tag a specific person, and easily visualize
differences in code. P6 described the pull requests for
communication: “They [committers] do comment on
pull request and yeah, it’s good way to like, really tell the
submitter I don’t like this code or correct this way and
resubmit it or maybe this part of code you need to create
a separate pull request. [T]hat kind of discussions
happen on pull requests.”

4.3. Duality of Developer Identity

All but four of our subjects were members of a team
affiliated with a company. Subjects from company teams
were deployed to an OSS project by their employer, who
was thus a stakeholder in the development community.
The interviews show that the individual contributors had
duality in identity, such that they participated in the
community as an individual, while they represent the
interests of their company team and the company. P8
described: “I think you know you're part of the open
source community, you wear that open-source hat but
still you do represent for you at least are driven by your
company interest somewhere.”

Thus, in determining what to do for the community,
contributors were governed by two different sets
of concerns: organizational decisions and individual
interests. P3 reflected the time when he was working for
a company: “I was told what to do and it was until I left

and actually worked for the foundation, then I had the
freedom that I have to figure out like, “Okay, like what
next?”. Decisions regarding certain code changes and
feature implementations were made in internal meetings
within the company team. An individual contributor
was a point of contact for each team. They conveyed
the team’s and company’s needs for a feature to the
community and implemented them by working with
other developers in the company and the community.
P16, as a team leader, emphasized: “I am a decision
maker so basically I assign task to each team member
based on his/her strengths. They will see their assigned
tasks in issue tracker.”

On the other hand, the company-affiliated
contributors retained agency to make small changes
bypassing explicit communications within their team.
Fixing bugs and typos are good examples of the small
contributions. P1 said: “That’s not the right work but
Jjust looking for sort of looking for little minor, tiny little
improvements because I like the project and I wanted
to be engaged with it.” P6 explained the duality more
specifically: “If I am doing some fun work for me, right.
So that’s a different story where I do some fun work.
But mostly it’s not that case, mostly it’s driven by my
current needs in the organization and that open source
stream that had a gap in that.”

In contrast to contributors, it was observed that
committers had more agency to choose what to do and
thus made changes to the project based on their greater
power. However, the greater agency of committers
was not independent, but still influenced by their
company as the contributors were. More specifically,
while contributors’ activities were dictated more by
their employer’s needs with some space for their
personal interest, committers were able to exercise more
autonomy with consideration of the expectation of their
company. Pl summarized this well: “[A]s I become
more central to the [project], I'm a committer now and
I’m on the project management committee, I feel like 1
am one of those much more central people. I tend to
Jjust ask myself what do 1 feel like working on? What
is interesting to me and what would be helpful to my
employer obviously as well. That’s in my mind as well,
which is one of the reasons they’re happy to pay me to
do this.”

As such, many individuals had multiple
memberships in teams in and outside their employer
and roles acquired based on the amount of code
contribution and the tenure in the community. We
discovered that the membership of company teams
resulted in a duality when exercising their agency as an
individual participant of a community. The agency was
performed mainly by deciding what to do and how to

do implement the decision. Such decisions were made
through a developer’s motivation to contribute to the
codebase, but company teams behind the developers
influenced the decisions by enforcing technical demands
and needs for developing commercial products.

4.4. Actor-(Broken) Network

When connecting the actors of company teams
into an actor-network, we discovered that the whole
actor-network was divided into multiple clusters based
on companies. However, the coordination among the
clusters was reported to be not effective. Interviewees
did not report on formal connections among the
company teams in coordinating works in the community.
Instead, coordination was done via loose ties between
individual developers representating of their teams.
Their interactions determined what should be done for
a project (e.g., adding a feature or deciding a long-term
direction of the project). Subjects in larger projects
reported the disjoints between company teams. For
instance, P13 mentioned “It is more common to have
internal meetings with people who are working for the
same company. It gets harder for people outside the
team to follow what is going on for the project and what
they are trying to do. There is like a big void that you
can’t never see. No discussion, it’s like something is
done all of sudden like Ta-da.”

The broken network was reported to cause
coordination problems. One problem was the
duplication of effort in writing code for the same
module by individuals from different company teams.
The duplication of effort was largely viewed as a
negative thing (i.e., “waste of time and effort” (P12)).
These problems were in part because of 1) lack
of explicit coordination on assigning a task among
developers from company teams and 2) the tools failing
to provide social awareness. P15 explained the disjoints
in coordination between company teams via individual
developers: “Most people would prefer to work with the
team or person that they can easily communicate like
physically co-located or someone they know. This is one
of the disadvantages of open source development, how
can you know when a person is going to finish or will
he ever finish it. So, working on the same module, its
more likely to be a group of people who are physically
working together.”

In addition, the broken ties may hamper the overall
development process of a project. Company teams
put forth their interests, tried to optimize their product,
and prioritized the features that were wanted by their
customers. Thus, rather than negotiating an end goal
of the project with other parties, the company teams

often became possessive of their code and even prevent
others’ work from being used widely in a community.
P2 explained: “Usually people from those companies
start coming and pressuring to get the work done. That’s
what usually breaks ties I would say, in my experience,
on the bigger contentious things if they just don’t choose
to fork off and make their own component. They were
essentially doing everything they could to prevent us
from performing well on their clusters.”

5. Discussion

We described human and non-human actors and the
actor-network. The human actors include individual
developers, company teams, and companies, while
tools and code itself were identified as important
non-human actors. These actors failed to establish one
whole actor-network, but rather had broken links and
inefficiencies in coordinating works among them.

5.1. Actor-Network in OSS 2.0

The actors constituted a multi-layered
actor-networks for coordination in OSS communities
(see Figure 1). The actor-network consists of both
the human and the non-human actors identified above
and illustrates relationships among the human actors,
which are mediated by the non-human actors. In
addition, the actor-network identifies company teams as
major players, with which individual contributors and
committers are affiliated. Company teams themselves
are the actors, but at the same time, hold its own
assemblage embracing individual developers and team
members who are outside an OSS community. In the
actor-network, company teams established a boundary
based on corporate affiliation (depicted with solid lines
in the figure), whereas OSS communities were intended
to be open with “low barriers of entry” (P4) from
outside (the dashed line in the figure). Overall, the
actor-networks in the OSS communities were found to
be collections of heterogeneous actors who exchanged
influences to attain mutual interests out of coordination.

5.2. Theoretical Implications

5.2.1. Code with Agency ANT allowed us to
attribute more agency to non-human actors. In
particular, code itself turns out to be the centerpiece
of the coordination among the human actors in OSS
development. The codebase was a useful conduit to
deliver signals regarding what to do, what has been

Corporate

Open Source
Community

Corporate

Corporate
Team

Corporate
Team

Figure 1. Actor-Network in OSS 2.0

done, and who is responsible. These signals had an
active role to change behaviors of individual developers,
team meetings, companies, and eventually the direction
of the project development throughout the community.

In addition, the codebase contained rich information
about an OSS community. We found that communities
have their own rules and norms in writing code and
submitting changes. Writing good code and commit
messages were implicitly defined within a community
and enforced to individual contributors. Code also
manifested the tension between company teams who
prioritized their interests.

Tools like pull requests and issue trackers were
supporting the agency of code by easing the effort of
writing, reading, and making sense of the codebase.
Technical affordance of the tools, including notifications
and commenting in line, provided social awareness and
contextual continuity to developers working in different
time and locations.

Theoretically, we understood the role of non-human
actors as a mediator. Mediators “transform, translate,
distort, and modify the meaning or the elements they
are supposed to carry” [10l p. 39]. Mediators should be
distinguished from intermediaries, which simply tranfer
meaning and information without altering the actor’s
behaviors, intentions, and expectations [[10]. Therefore,
by posing our non-human actors as mediators, we
highlight its robust agency to influence the human
actors and eventually the coordination in the OSS
communities. Our study provides a new insight into
the current literature on OSS work by highlighting the
more significant role of the code. Previous works on
OSS 1.0 (e.g., [7]) mainly focused on the technical
affordance of collaboration tools and treated the code as
an artifact or work outcome. However, we showed that

the codebase, as a malleable, collective organism, is at
the core mechanism of coordination in OSS community.

Understanding how different actors react and behave
related to code should be an interesting theoretical
concern. Our data showed that committers and
contributors had different attitudes and practice in
writing and interpreting code. The former was reported
to have more freedom to choose which part of the code
to work on, whereas contributors were required to write
better code that should also easily make sense (e.g., P4).
Such different relationships of code with actors may
raise tensions and illuminate several matters of concerns
as Latour noted [10].

5.2.2. Companies as New Actors and OSS 2.0
Companies contributed to the projects by deploying
individual developers from a team to an OSS
community, and they leverage the collaboration between
their employees and the community. The individuals
from company teams were working as a conduit to
provide their resources to the community and getting
a community of help for their product. However, our
data implied that different interests of companies did
not have a clear forum for a communal resolution and
that there was a lack of translucency among company
teams. These seemed to hinder individuals from
working together.

By considering companies as actors, our
understanding of other roles can change. For instance,
given that committers possess more agency and
power to determine what issues to solve and what
changes to merge, companies should want their
employees to become committers. Also, it may become
harder for purely voluntary individuals to become a
committer. Indeed, the enforcement of norms about
code quality—potentially in conflict with the norm of
keeping “the barrier to entry on the open sourcing
low” and welcoming more contributors (P4)—could be
viewed as a way to enhance company control.

Moreover, putting companies forth may alter how
OSS development works in the future. Most OSS
communities, especially in Apache Foundation, adopt
“the consensus-based, community-driven governance”
(a.k.a., The Apache Way). Our findings suggest that
we may have to reconsider the agency of individual
participants in OSS development, in conjunction with
the agency of corporate stakeholders. This study not
only echoes the notion of OSS 2.0 by Fitzgerald [5]] but
also puts more emphasis on the agency of companies in
the OSS scene.

We describe the roles of companies, which were
relatively unseen in the network [3, 20]. Putting
the company teams and companies forth can provide

new insight into understanding the recent trends
in OSS communities. Previous literature on OSS
projects primarily viewed that projects were driven
by a collective effort of independent individuals [16].
However, especially in big projects, companies are at
the core by providing resources, such as manpower and
supporting conferences, and expanding the user base of
the project.

Although the presence of companies in OSS scenes
has been noted in the previous works, research identified
companies as a type of patron or supporter of a
community [9} [19]. However, we unfold the underlying
relationships of company teams and concerns of
individuals who are involved in and work with the
company teams. Specifically, individuals from company
teams still voluntarily exert effort, decide what to do,
and negotiate between their interests and those of their
company. We highlight such dual-facet of the individual
developers in OSS 2.0.

ANT was useful to illuminate the other side of the
coordination across individuals, company teams, and
companies in OSS communities. Because ANT does
not limit our observations to predefined groups and their
roles (e.g., only contributors and committers) and allows
us flexibility of describing emerging relationships [10].
Our findings were discovered largely through paying
attention to relational aspects (e.g., how they work
together, how code changes behaviors), rather than
actions of each actor (e.g., how they use tools).

5.3. Practical Implications

We showed that code has agency and delivers various
signals for coordination. Our practical implications,
thus, emphasize the increasing role of code and its
supporting tools. First, tools for writing and submitting
code should provide more nuanced social awareness.
We found that there were certain norms and rules
to write good code to be reviewed by committers.
The tools can embed a community-approved template
including such information as the writer, the logic
behind, and their affiliation.

Second, tools should support modularity in the
codebase. Our findings suggest that companies seem
to work on different part of code, but the boundaries
among the parts were not clearly negotiated nor defined
among corporate stakeholders. Tools can improve
coordination among the company teams, for example,
by showing particular lines that are affected by new
commits and providing enhanced searchability. It can
also have a dicussion forum for companies. In those
ways, work can be shared without version conflicts and
avoid duplication of effort by different parties.

5.4. Limitations

This study has several limitations. First, we were
not able to examine the development and evolution
of actor-networks. Such matters may require other
types of data, such as longitudinal observation of online
activities and code changes. Second, as we analyzed
data, we realized that other parties, such as customers
of a product based on an OSS project and users of an
OSS project, may play significant roles as well. Future
studies should involve these actors as well and complete
the actor-network.

6. Conclusion

We looked at the coordination in OSS communities
through the lens of ANT approach. We discovered
several kinds of human and non-human actors.
Companies were identified as a significant actor in the
scene, which have been treated tangentially in OSS
communities. We also highlighted the active roles of
tools and code as mediators, through which social cues,
norms, and information on the work were delivered.
Our results inform the design of tools supporting
coordination in OSS communities, and suggest several
ways to improve transparency in collaboratively writing
code.

References

[1] K. Crowston, C. @sterlund, J. Howison, and F. Bolici,
“Work features to support stigmergic coordination
in distributed teams,” in Academy of Management
Proceedings, p. 14409, Academy of Management, 2017.

[2] K. J. Stewart and S. Gosain, “The impact of ideology
on effectiveness in open source software development
teams,” MIS Quarterly, vol. 30, no. 2, pp. 291-314, 2006.

[3] M. Andersen-Gott, G. Ghinea, and B. Bygstad,
“Why do commercial companies contribute to open
source software?,” International Journal of Information
Management, vol. 32, no. 2, pp. 106-117, 2012.

[4] G. Von Krogh, S. Haefliger, S. Spaeth, and M. W. Wallin,
“Carrots and rainbows: Motivation and social practice
in open source software development,” MIS Quarterly,
pp- 649-676, 2012.

[5] B. Fitzgerald, “The transformation of open source
software,” MIS Quarterly, pp. 587-598, 2006.

[6] K. Crowston and J. Howison, “The social structure
of free and open source software development,” First
Monday, vol. 10, no. 2, 2005.

[7]1 L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social
coding in github: transparency and collaboration in an
open software repository,” in Proceedings of the ACM
2012 Conference on Computer Supported Cooperative
Work, pp. 1277-1286, ACM, 2012.

[8] F. Bolici, J. Howison, and K. Crowston, “Stigmergic
coordination in FLOSS development teams: Integrating
explicit and implicit mechanisms,” Cognitive Systems

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(7]

(18]

(19]

[20]

(21]

(22]

(23]

Research, vol. 38, pp. 14-22, 2016. Special
Issue of Cognitive Systems Research — Human-Human
Stigmergy.

J. Lindman and I. Hammouda, “Support mechanisms
provided by FLOSS foundations and other entities,”
Journal of Internet Services and Applications, vol. 9,
no. 1, p. 8, 2018.

B. Latour, Reassembling the Social: An Introduction to
Actor-Network-Theory. Oxford University Press, 2005.

N. Kumar and N. Rangaswamy, “The mobile media
actor-network in urban India,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pp. 1989-1998, ACM, 2013.

A. Aksulu and M. R. Wade, “A comprehensive review
and synthesis of open source research,” Journal of the
Association for Information Systems, vol. 11, no. 11,
pp- 576-656, 2010.

K. Crowston, K. Wei, J. Howison, and A. Wiggins,
“Free/libre open source software development: What
we know and what we do not know,” ACM Computing
Surveys, vol. 44, no. 2, pp. 7:1-7:35, 2012.

J. D. Herbsleb and R. E. Grinter, “Splitting the
organization and integrating the code: Conway’s law
revisited,” in [International Conference on Software
Engineering (ICSE), pp. 85-95, ACM, 1999.

K. Crowston, Q. Li, K. Wei, U. Y. Eseryel, and
J. Howison, “Self-organization of teams for free/libre
open source software development,” Information and
Software Technology, vol. 49, no. 6, pp. 564-575, 2007.

J. Howison and K. Crowston, “Collaboration through
open superposition,” MIS Quarterly, vol. 38, no. 1,
pp- 29-50, 2014.

A. Bonaccorsi, S. Giannangeli, and C. Rossi, “Entry
strategies under competing standards: Hybrid business
models in the open source software industry,”
Management Science, vol. 52, no. 7, pp. 1085-1098,
2006.

M. Germonprez, J. E. Kendall, K. E. Kendall,
L. Mathiassen, B. Young, and B. Warner, “A
theory of responsive design: A field study of
corporate engagement with open source communities,”
Information Systems Research, vol. 28, no. 1, pp. 64-83,
2016.

H. Mienpid, F. Fagerholm, M. Munezero, T. Kilamo,
T. J. Mikkonen, et al., “Entering an ecosystem: The
hybrid OSS landscape from a developer perspective,” in
CEUR Workshop Proceedings, 2017.

G. J. Link and D. Jeske, “Understanding organization
and open source community relations through the
attraction-selection-attrition model,” in Proceedings
of the 13th International Symposium on Open
Collaboration, p. 17, ACM, 2017.

E. von Hippel and G. von Krogh, “Open source software
and the private-collective innovation model: Issues for
organization science,” Organization Science, vol. 14,
no. 2, pp. 209-223, 2003.

N. Ducheneaut, “Socialization in an open source
software community: A socio-technical analysis,”
Computer Supported Cooperative Work (CSCW), vol. 14,
no. 4, pp. 323-368, 2005.

K. Charmaz and L. L. Belgrave, “Grounded theory,” The
Blackwell Encyclopedia of Sociology, 2007.

	Introduction
	Background
	Coordination in OSS
	Actor-Network Theory Approach

	Method
	Data Collection
	Data Analysis

	Findings
	Human Actors
	Contributors and Committers
	Company Teams

	Non-Human Actors
	Code
	Tools

	Duality of Developer Identity
	Actor-(Broken) Network

	Discussion
	Actor-Network in OSS 2.0
	Theoretical Implications
	Code with Agency
	Companies as New Actors and OSS 2.0

	Practical Implications
	Limitations

	Conclusion

