
Heartbeat: Measuring Active User Base and
Potential User Interest in FLOSS Projects

Andrea Wiggins, James Howison, and Kevin Crowston

Abstract This paper presents a novel method and algorithm to measure the size
of an open source project’s user base and the level of potential user interest that
it generates. Previously unavailable download data at a daily resolution confirms
hypothesized patterns related to release cycles. In short, regular users rapidly down-
load the software after a new release giving a way to measure the active user base.
In contrast, potential new users download the application independently of the re-
lease cycle, and the daily download figures tend to plateau at this rate when a release
has not been made for some time. An algorithm for estimating these measures from
download time series is demonstrated and the measures are examined over time in
two open source projects.

1 Introduction

Measuring FLOSS project success has been a subject of intense research interest; it
is the most common dependent variable in FLOSS research [1]. One of the most de-
sirable measures of external success is a measurement of software use, representing
the volume of active users of the software. Unfortunately, usage is also one of the
hardest measures to acquire, since software use occurs in a local computing context
and rarely leaves evidence in public archives. This paper draws on user and devel-
oper experiences to design an algorithm to process download counts to estimate
the change over time in both the general level of interest, drawn from experimental
first-time downloads of the software, and the size of the active user base.

Andrea Wiggins
Syracuse University, Hinds Hall, Syracuse, NY 13244 USA e-mail: awiggins@syr.edu

James Howison
Syracuse University, Hinds Hall, Syracuse, NY 13244 USA e-mail: jhowison@syr.edu

Kevin Crowston
Syracuse University, Hinds Hall, Syracuse, NY 13244 USA e-mail: crowston@syr.edu

1



2 Andrea Wiggins, James Howison, and Kevin Crowston

2 Measuring Software Use

Software use is a component of all software success frameworks [3, 6], including
those which focus specifically on the FLOSS environment, as discussed in detail
in recent review articles [5, 2]. Unfortunately, usage is very difficult to measure in
the FLOSS context. There are two basic techniques that are commonly suggested:
surveys of users and analysis of public archives.

Surveys of users would perhaps provide the best data because it would be possi-
ble to ask which applications were tried, which were selected for regular use (and
why) as well as measuring frequency of use. Surveying users of FLOSS projects
poses significant challenges, however, because of the lack of an available sampling
frame and the large number of FLOSS projects for which comparative informa-
tion would be desired. As well, responses to such a survey would be affected by
limitations of user recall. Automatic surveys are a possible source for these data,
and there are limited efforts to conduct automatic measurement by installing agents
on user’s computers which report usage statistics. For example, the “Debian Pop-
ularity Contest” project1 reports usage in this fashion for packages on the Debian
(and Ubuntu) Linux distributions: users opt-in to install a special reporting pack-
age which provides the project with aggregated and anonymized statistics regarding
packages installed and packages actually used. Assuming there is little systematic
bias amongst those that choose to install the reporting package, the data is excellent,
but it remains limited to Linux users and measures usage at the Debian package
level, rather than the individual project level. Individual FLOSS projects sometimes
gauge usage through software agents installed in the application or through auto-
mated crash reporting software, although the practice is somewhat controversial and
the data rarely available to researchers.

The second technique is to analyze online evidence of application use. This is
relatively easy for applications that regularly connect to the web. For example, the
Netcraft league tables measure the “market share” of various web servers by using
spiders that crawl websites and headers set by the products. Other groups provide
data on web browser usage, based on the evidence from the user agent strings logged
at different websites. These techniques are also feasible for applications delivered
as web services. Unfortunately, most FLOSS applications are still used in a local
context where application usage does not leave evidence in public archives, making
these approach inapplicable.

Because of the lack of direct measures of use, many researchers turn to other
available data that serves as a proxy for usage. Download counts are the most com-
monly used success measure, and are often argued to be a viable proxy for software
use and an analogy to market share. The choice of downloads as a proxy for usage
rests on the fact that obtaining software is antecedent to using it, and in the FLOSS
world the most common method for obtaining software is downloading it, often
from a project forge site, which leaves evidence in public archives that is readily

1 http://popcon.debian.org/



Heartbeat: Measuring Active User Base and Potential User Interest in FLOSS Projects 3

available to researchers. However, there are numerous problems with this interpre-
tation.

First, downloads tell us relatively little about the size or growth of an active user
base because the measure can not address how many downloads convert into actual
use of the software. Download counts may be an inflated measure of usage due to
a process of experimentation, whereby the application is downloaded but rapidly
discarded as unusable. Second, it is problematic to assume that a single data source
such as a count of downloads tells the full story, since software is distributed through
multiple channels (physical media, Linux distributions, etc). This limitation means
that downloads will misrepresent more mature projects that are most likely to be
part of a default installation.

Finally, a further confound, particularly for the common use of aggregate life-
time download figures, is that FLOSS projects release updated versions of their
software relatively frequently and downloads of these new releases by current users
will inflate the total download counts. More problematic though, projects release at
different rates. A project making more frequent releases may have more downloads,
even though the actual number of regular users may not be significantly different
from a project that makes fewer releases and therefore has fewer downloads. Again,
mature projects suffer in these comparisons because they typically make fewer re-
leases, even though they might have a very satisfied user base.

The remainder of this paper uses contextualized knowledge of patterns of use and
downloads to design an algorithm to process download measure over time to remove
some of these confounds. The result is a more nuanced and useful understanding of
download figures and measures of both regular users, experimentation rates and the
conversion between them.

3 Hypothesis development

In this section, we draw on personal experience to develop a set of hypothesis about
download behaviour and its relation to software use. The authors are all regular
users of many FLOSS applications but as a basis for theorizing, we consider two
in particular, BibDesk and Skim-app, as one of the authors has participated as a
developer in these two projects for several years. BibDesk is a reference manager
for BibTeX, while Skim-app is a PDF reader and annotator optimized for academic
papers. Both applications run exclusively on the Mac OS X platform and are almost
exclusively distributed through regular downloads from their Sourceforge sites2.

In considering these projects, we made two important observations regarding the
relationship between downloads and software use. First, the software was initially
obtained by the authors while exploring alternative reference managers. The initial

2 We say ‘almost’ because both applications are sometimes included in packaged distributions for
scientists, such as MacTeX. These distributions almost always lag behind the current versions,
however, and observation on the mailing lists shows that they are not a large source of users for the
applications.



4 Andrea Wiggins, James Howison, and Kevin Crowston

download was driven by the private work cycles of the potential users, but once
adopted, the application is used regularly, usually daily.

Second, these projects are both active and periodically release new versions that
both fix bugs and extend features. Releases vary in their frequency, sometimes com-
ing ‘often and early’, sometimes at a slower pace, depending on the development
activity of the project team, although rarely with longer than a few months between
releases. Both projects also release more than one package each. In addition to the
BibDesk package, the BibDesk project provides an Input Manager for LaTeX pro-
grams, and Skim-app makes available a library for extending the use of user anno-
tations. In both cases, however, the primary package is several orders of magnitude
more popular than the secondary packages.

When projects make a new release, users are informed through two methods. The
first is an announcement through the project’s mailing lists, including the “ANN”
(for announcement) lists which are specifically intended for this purpose. The sec-
ond, a more recent addition, is through a ”nag” screen in the software itself, which
checks for new versions at specified intervals. For these applications, users may be
motivated to download new versions relatively quickly. This is in part because the
software is improving in desirable ways, but it is also driven by the fact that user
support responses usually begin by insisting that the user first update to the most
recent version. This practice is common in FLOSS projects, since the latest version
has often fixed the issue in question. In our experience we have usually updated the
application within days of a new release, and almost always with a matter of weeks,
noting that at the individual level, these patterns are still affected by private work
cycles.

These common experiences suggest a number of hypotheses regarding the rela-
tionship between releases and download counts. First, we expect there to be a rela-
tively constant level of downloads that is effectively independent of new releases, as
potential new users are driven by their own work cycles to try the software. Second,
regular users will respond relatively quickly to new releases, causing significant in-
creases in downloads during the days just following a new release. If a project is
successfully converting experimenters into users, the response to releases will in-
crease over time. Assuming the application does not achieve market saturation, the
experimentation rate will remain constant or potentially increase over time if the
application receives good publicity or word of mouth.

Figure 1 shows an idealized depiction of the trends expected in the downloads.
The grey area shows the experimentation rate, depicted as basically regular but
growing over time, perhaps as the result of increased publicity, or word of mouth.
The white area under the curve shows the size of the installed base that regularly
updates the software, which is also depicted as growing over time in an idealized
successful project.



Heartbeat: Measuring Active User Base and Potential User Interest in FLOSS Projects 5

Version 0.5 Version 0.6 Version 0.7

Area under 
curve is active 
users updating

Active user base
 growth

Potential user 
experimentation 
growth (good 
publicity?)

do
w

nl
oa

ds

Fig. 1 An idealized depiction of download and release trends. The grey area is potential user
downloads, the white area under the curve is the active user base.

4 Data

The hypotheses proposed above can be validated using package release and down-
load data from Sourceforge. These data are readily available on the Sourceforge site,
but historical data on downloads is only available in monthly aggregates. Our hy-
potheses require daily data, however, which at any given time is only available for
the past 60 days.

In order to build the daily time series data required for analyses like this one,
the FLOSSmole project[4]3 has been spidering and storing the 60-day historical
data as an aggregate measure for all packages of a project, and has accumulated
daily download data covering approximately three years. Release data are available
from the Notre Dame Sourceforge Research Archive (SRDA4) and release lists are
available for each package produced by a project.

5 Descriptive Results

Figure 2 shows a daily time-series of BibDesk downloads plotted against releases of
the primary package. There are four characteristics that are immediately apparent:

1. Pronounced download spikes following new releases,
2. Cyclic weekly effect causing regular saw-like patterns,
3. Relatively flat downloads in periods without new releases, and
4. Growth over time in both the post-release spikes and the flat periods.

3 http://ossmole.sf.net
4 http://zerlot.cse.nd.edu/



6 Andrea Wiggins, James Howison, and Kevin Crowston

Fig. 2 A daily downloads time-series for Bibdesk. Release dates for the primary package are
marked with vertical lines.

The first notable pattern is a pronounced spike in downloads of several orders of
magnitude, clearly associated with new releases of the software, as hypothesized.
These appear to fall off predictably, assuming another release is not made within a
short period of time. The pattern of decay appears to be near-exponential, with the
bulk of downloads occurring within a matter of days, and the effect decaying com-
pletely within a week or two. When the releases are clustered in quick succession,
the second release appears to restart the pattern.

The second pattern is a weekly cycle that generates a saw-like effect where down-
loads rise and fall within a relatively small amplitude. This effect is independent of
releases, as demonstrated by release decay curves which also feature these saw-like
patterns. Closer inspection of the data reveals that download rates fall while Sunday
works its way around the planet, creating a lull in activity of approximately 48 abso-
lute hours centered on Sunday evening GMT. This “Sabbath Effect” is so powerful
that releases made during this lull appear to have slightly delayed spikes.

The third pattern we observed is the suppression of download rates when a release
has not been made for some time, creating a plateau effect. Download rates in such
periods show little change and are relatively flat, especially if the cyclic weekly
effect is smoothed, e.g., by taking a moving average. A good example is the period
near January 2007 and July 2007.

The fourth observation is that over longer periods of time, the absolute size of
both the release spikes and the flat periods are subject to change, rising and falling
dynamically. Overall, however, both the size of post-release spikes and the plateaus
appear to grow in magnitude.

These patterns appear to confirm the hypotheses developed through participation
in the BibDesk project. The combination of post-release spike-and-decay pattern,
together with the flat downloads when no release has been made for some time, ap-
pears to be best explained through the understandings developed above. This spike
represents regular, active users of the software updating their installed copies, with
the decay showing that not all users update immediately, but that most do within
a week or two. The flattening of the download series during the lull between re-



Heartbeat: Measuring Active User Base and Potential User Interest in FLOSS Projects 7

leases also supports this interpretation, and the levels at which the series flattens
provide a theoretical baseline experimentation rate of first-time downloaders, which
is hypothesized to be relatively independent of effects from releases.

Growth over time in both the spike-and-decay pattern suggests that BibDesk is
successful at converting some of the experimenters into regular users, who then
update the software after new releases, leading to progressively larger post-release
download response. The strong growth in the average daily download rate during flat
periods seems to indicate that the project is enjoying an increasing experimentation
rate, which may relate to the rapid growth of the Mac OS X operating system during
this period of time.

Fig. 3 Skim-app downloads and releases. Note that Skim-app project began only in early 2007, so
the time-period represented here is shorter than BibDesk.

Figure 3 confirms that similar patterns are present in the Skim-app project. The
Skim-app project was recently founded in early 2007, so the time period represented
in this figure is much shorter than that for BibDesk, and the shorter time period
makes the weekly download cycle pattern more apparent. Missing data for July
2008 is also clearly visible in an abnormally straight line segment, which is a result
of Sourceforge’s difficulties with their statistics server combined with the order in
which FLOSSmole spiders the pages. Compared to BibDesk, Skim-app also shows
a more rapid release cycle, which often seems to abbreviate the full decay of the
release effect. Overall, the project appears to show growth in both the release effect
and the average download rates during the flat periods, although these trends are less
apparent than with BibDesk.

Finally, it should be noted that both projects show spikes that appear to be larger
than the usual weekday cycle effects, but are not directly caused by a release. In
Skim-app, one of these anomalous spikes can be seen just prior to July 2007, and
in BibDesk two instances are observed just prior to April 2006 and again in April
2007. We expect, but have not confirmed, that these are caused by one-time publicity
events (e.g., being favorably reviewed in a blog), temporarily driving up the number
of downloads to a rate that varies significantly from the usual experimentation rate.



8 Andrea Wiggins, James Howison, and Kevin Crowston

6 Quantifying the user base

Using the model developed above of the patterns observed in time series of daily
downloads, we are able to go further and quantify the size, over time, of both the
installed base and the experimentation rate. These measures can ultimately be used
together to estimate the rate at which these projects convert potential users to actual
users. The resulting algorithm for determining the estimated active user base for a
FLOSS project is simple to describe, but somewhat more complex to evaluate. We
used a scientific workflow analysis tool to automate the process of retrieving data
from two repositories, FLOSSmole and SRDA, and then plot releases and down-
loads together, confirming through inspection that the release-based triggering of
user downloads is occurring and that it is therefore appropriate to utilize the user
base estimate. A separate workflow calculates the required metrics to produce the
measures and display trends as values in a time series plot.

The calculation of the two measures, experimentation rate and user base, requires
daily download data for two time periods of equal length, centered around the sam-
pled release. We only sampled releases where there were no other releases made
during this entire time window, as we observed that such releases interfered with
the decay of download rates to their normal experimentation levels. Unfortunately,
this reduces the number of usable data points for each project, but it improves the
validity of the results. We had to select the length of the period before and after
the release for calculating the measures; we optimized our selection by comparing
results for one week and two week periods, and found the single week period to
provide the most consistent results.

We therefore considered the week prior to the release date as the baseline level
of user interest; the daily download rates are averaged for these 7 days to generate a
daily baseline measure. The daily downloads for the week after the release, starting
at the release date, provide the data to estimate the active user base. We summed the
daily downloads over these 7 days, and then subtracted the sum of downloads over
the baseline period to eliminate the effect of normal daily experimental downloads,
which continue regardless of the release.

This algorithm is applied to each selected release, allowing us to track changes
over time in both the baseline level of user interest in the software, and in active
user base. We express the function as follows: for a release date R, the mean µd
of daily downloads d over [R−8,R−1], provides the baseline daily download rate.
The active user base is then estimated by taking the sum of daily downloads after
the release and subtracting the daily downloads prior to the release:

dR+6

∑
dR

d−µd



Heartbeat: Measuring Active User Base and Potential User Interest in FLOSS Projects 9

7 Numerical Results

This analysis workflow results in two time series, one for each measure, as shown in
Figure 4, for BibDesk, and Figure 5, for Skim-app. The results shown here use a 7
day period for calculating the figures. The baseline rate (the bottom dotted line) is a
daily figure, while the user base (the upper solid line) is an estimate of total number
of users that update regularly.

The baseline experimentation rate for both projects seems to be quite consistent,
with a trend towards growth recently in Skim-app. The mean daily rate for BibDesk
is 121 downloads, while for Skim the mean is 480. This makes sense because Bib-
Desk has a smaller potential market than Skim-app, since it is of limited use outside
of BiBTeX users, while Skim-app is useful to anyone working with PDFs.

In contrast, the calculation for installed base (the upper solid lines in Figures
4 and 5) displays substantial variance, particular with Skim-app. This result sug-
gests that our algorithm is not completely successful in removing noise, since the
installed base would not be expected to change so radically in a short period. Further
smoothing of these data might provide more usable results. Nonetheless the over-
all patterns and sizes appear to be reasonable. The higher experimentation rate of
Skim-app, combined with an overall growing active user base suggests that Skim-
app is set for faster growth than BibDesk. BibDesk may in fact be experiencing
declining numbers of active users, perhaps as a result of competition from other ref-
erence managers, such as Zotero, which are better suited to non-LaTeX document
preparation.

do
w

nl
oa

ds

●

●

●

●

●

●

● ● ● ● ● ●

1000

2000

3000

4000

5000

Oct−2005 Apr−2006 Oct−2006 Apr−2007

measure

user_base

baseline

Fig. 4 BibDesk: Measures of regular updaters (user base) and potential users (baseline)



10 Andrea Wiggins, James Howison, and Kevin Crowston

8 Discussion

The measures and analysis developed in this paper are a promising improvement in
measurement of software use for FLOSS software. The measures have substantial
face validity over raw download figures, which is increased by the authors’ direct
experiences with the projects. Nonetheless, the measures are subject to some serious
limitations.

The first set of limitations is the reliance on download data as a basis for the
measure. While readily available, downloads figures are known to be problematic
for a number of reasons [1]. First, the data sources may be unreliable. Sourceforge,
for example, has had persistent issues with their statistics server, and has periodi-
cally revised their historical figures. In addition, variations in counting mechanisms
make it inadvisable to draw comparisons across different project forges. Finally, be-
cause the currently available downloads figures are at the project level rather than
the package level, our approach will work only when the project has an unambigu-
ous primary package that accounts for a very substantial portion of the downloads.
Projects having multiple packages with similar levels of download popularity would
certainly confound the method.

A second limitation is in the calibration of the durations used, in this case one
week, for measuring both the installed base and the experimentation rate for each
period. Varying this period leads to substantial changes in the measures, and would
lead to different interpretations of the patterns. At the same time, the rate at which
regular users download software after a release seems to vary significantly as well.
Skim-app’s post-release download fervor was typically over much more quickly
than BibDesk’s, which sometimes took close to three weeks to return to a relatively
stable rate. These differences may reflect more frequent use of Skim-app compared
to BibDesk, leading to quicker updates. A more sophisticated approach would at-

do
w

nl
oa

ds

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
● ● ● ● ●

●
● ●

2000

4000

6000

8000

May−2007 Nov−2007 May−2008

measure

user_base

baseline

Fig. 5 Skim: Measures of regular updaters (user base) and potential users (baseline)



Heartbeat: Measuring Active User Base and Potential User Interest in FLOSS Projects 11

tempt to model the download time series with parameters for weekly, release and
update intensity effects.

There are also unresolved questions about the generalizability of this method.
The conceptualization of the underlying processes relies on the assumption that
users will move quickly to update their software. This seems likely true only for
software that has everyday use, and where extension, rather than stability, is the em-
phasis of the project’s community efforts. Projects which produce irregularly used
software, such as conference organization systems, or software where stability is a
strong concern, such as Ruby on Rails or Python, would not be expected to produce
the same patterns. Similarly, server software might be upgraded much more delib-
erately than end user software. It is also important to note that one must be careful
in comparing downloads between different types of software products, since their
potential market sizes are very different. Web server software, such as the Apache
HTTP Server, has a much larger audience than bibliographic software like BibDesk.

For these reasons, we do not recommend using this analysis approach without
first inspecting the download and release time series for evidence of consistent re-
lease responses. Alternately, assuming that the software is expected to be regularly
downloaded, a lack of this pattern could be taken as prima facie evidence that the
project makes its software available in different ways. In this respect, the method
would therefore provide a way to check the validity of using development forge
download figures alone for estimating active user base for that project.

9 Conclusions and Future Work

In conclusion, this paper makes methodological contributions by developing new
measures, and reports empirical results from evaluating the measures:

• We introduce and evaluate a new measure for estimating baseline user interest in
FLOSS projects.

• We introduce and evaluate a new measure for estimating active user base for
FLOSS projects.

• We apply these measures in time series analysis of two FLOSS projects, finding
that the overall levels of both measures show good face validity. As a longitudinal
time series, the baseline measure also shows good face validity, but the active user
base measure displays surprising variance.

The measures developed in this paper can be used wherever a dependent variable
of project popularity is called for, such as cases where popularity is incorporated
with other metrics into an overall measure of project success. Future work could
evaluate these findings against a more dynamically selected time range for these
measures, as there may be room for improvement in the selection of time periods
for the baseline download rate and the post-release period, as the time windows
that we selected are somewhat arbitrary, based on an heuristic from evaluation of
a small sample. A slightly more complex function might determine the length of



12 Andrea Wiggins, James Howison, and Kevin Crowston

the post-release period based on the time required for daily downloads to return to
a rate within a standard deviation of the baseline rate. This method might offer a
more precise measure, but would potentially also be more sensitive to variations in
software release patterns by project.

A limitation of our current study is that we do not have an independent estimate
of the user base for the two projects studied against which to calibrate our measure.
Future research should apply our measure to more projects and in particular, to
projects for which other estimates of users can be made in order to assess the validity
of the measure.

Finally, this method may also apply to non-FLOSS downloaded software which
is regularly updated, such as shareware or other regularly updated software, includ-
ing iPhone applications. Applying this estimation method is limited only by the
reliance high-resolution download figures and release dates, as well as the assump-
tions discussed above.

References

1. Crowston, K., Howison, J., Annabi, H.: Information systems success in free and open source
software development: Theory and measures. Software Process: Improvement and Practice
11(2), 123–148 (2006). DOI 10.1002/spip.259

2. Crowston, K., Wei, K., Howison, J., Wiggins, A.: Free/libre open source software development:
What we know and what we do not know (2008). Under Review

3. Delone, W., Mclean, E.: Information systems success: The quest for the dependent variable.
Information Systems Research 3(1), 60–95 (1992)

4. Howison, J., Conklin, M., Crowston, K.: FLOSSmole: A collaborative repository for FLOSS
research data and analysis. International Journal of Information Technology and Web Engi-
neering 1(3), 17–26 (2006)

5. Scacchi, W.: Free and open source software development: Recent research results and methods.
In: M. Zelkowitz (ed.) Advances in Computers, vol. 69, pp. 243–295. Elsevier Press (2007).
DOI 10.1016/S0065-2458(06)69005-0

6. Seddon, P., Staples, S., Patnayakuni, R., Bowtell, M.: Dimensions of information systems suc-
cess. Communications of the Association for Information Systems 20(2), 61 (1999)


