
Boundary-Spanning Documents in Online FLOSS Communities:
Does One Size Fit All?*

Carsten Østerlund & Kevin Crowston
Syracuse University School of Information Studies

Abstract
Online communities bring together people with

varied access to and understanding of the work at
hand, who must collaborate through documents of
various kinds. We develop a framework articulating
the characteristics of documents supporting collabo-
rators with asymmetric access to knowledge versus
those with symmetric knowledge. Drawing on theories
about document genre, boundary objects and
provenance, we hypothesize that documents supporting
asymmetric groups are likely to articulate or prescribe
their own 1) purpose, 2) context of use, 3) content and
form and 4) provenance in greater detail than
documents used by people with symmetric access to
knowledge. We test these hypotheses through content
analysis of documents and instructions from a variety
of free/libre open source projects. We present findings
consistent with the hypotheses developed as well as
results extending beyond our theory derived
assumptions. The study suggests new directions for
research on communications in online communities, as
well as advice for those supporting such communities.

1 Introduction

The information technology revolution has led to
the proliferation of online communities and digital
collaborations both within and across organizations. In
many online communities, documents (considered
broadly) constitute the primary (or only) means for
knowledge sharing and exchange among collaborators.
Research has suggested the importance of mutual
knowledge [1], shared mental models [2] or common
ground [3] as a basis for communication. Yet, commu-
nity members often bring divergent understandings and
knowledge from non-converging frames of reference to
the production and use of documents, hampering
communication. For example, a novice programmer
with no history in a particular project may be able to
get some sense of the work completed from a report
written by a software engineer on the project.

* Previous versions of this paper have been presented at HICSS

2012 and as a research-in-progress paper at ICIS 2012. The current
version includes a greatly expanded data set (14 projects rather
than 2) and extended discussion.

However, without knowledge of the organizational
practices that went into creating the code and the
report, the novice may be unable to use either to
determine what to do to make a contribution. In
contrast, an expert engineer with experience on similar
projects may simply need a few key words to guide his
or her future work. A single type of document does not
fit both audiences. How then can IS researchers and
practitioners best support such heterogeneous online
environments with 1000s of users, some deeply
involved, many only peripherally so?

In such situations, one is often advised to fall back
on the age-old truism, “know your audience and write
appropriately.” But what does it mean to write
appropriately for an audience? To following the
saying, one needs to be able to address two questions.
1) Who is the audience? 2) How does one write
appropriately? In this paper, we manipulate the first
dimension by studying two types of relations among
writers and their audience: relations characterized by
symmetric access to knowledge vs. asymmetric access
to knowledge. This manipulation allows us to answer
the second question by examining what aspects of
documents can be tailored based on the background
knowledge of different audiences and so exploring
strategies that online community members apply to
“write appropriately” to these two different types of
audiences. More specifically, we address the following
question:

What characterizes documents that link
people with asymmetric access to background
knowledge compared to documents used
among people with symmetric access to
knowledge?

Answering this question is important for
understanding the nature of effective communication in
online communities, especially as they grow and
include participants that are more diverse., particularly
if one hope to automate some aspects of document
generation in online communities. Below, we develop
a theoretical perspective on documents that leads to
hypotheses for this question and present the design and
results from a research project that tests these
hypotheses.

2 Theory elaboration and hypotheses

As a basis for our study, we draw on three bodies
of work that describe documents and how they might
span groups: genre theory, work on boundary objects
and classification and studies of provenance. The first
perspective focuses on the common stock of
knowledge people bring to document production and
use specifically. The second addresses how artifacts,
such as documents, can bridge people with little shared
points of reference. The third speaks to how people
preserve the history and genealogy of documents to
alleviate a lack of shared reference points and
background knowledge.

Genre theory. Document genre has been defined
as typified communicative action invoked in response
to a recurrent situation [4-6]. People engage genres to
accomplish social actions in particular situations,
characterized by a particular purpose, content, form
and participants in specific times and places.
Identification of a document’s genre makes the
document more easily recognizable and
understandable, reducing the effort required to convey
meaning. For genres to be of aid in communication
though, they must be shared by members of the
community [7]. Thus, the utility of genres depends on
symmetric access to knowledge among a group of
people. Community members familiar with a genre are
likely to know the expectations implied. Conversely,
people with little access to the background knowledge
of the community are not likely to know the genre and
in turn bring few if any expectations about what
purpose, content and form a document in that genre is
likely to convey and what set of participants have
produced and use it at what times and places.
Therefore, to facilitate communication among people
with asymmetric access to knowledge, rather than
simply drawing on a genre, a document must explicitly
state its purpose, form, content, appropriate
participants and time and place of the communication.
These considerations lead to three general hypotheses:
Hypothesis 1: A document shared among people with

asymmetric knowledge is more likely to explicitly
state its purpose.

Hypothesis 2: A document shared among people with
asymmetric knowledge is more likely to explicate
the context of use in regard to appropriate
participants, times and places of its production and
use.

Hypothesis 3: A document shared among people with
asymmetric knowledge is more likely to explicate
the form and content of its communication.
Boundary objects theory. To further refine these

hypotheses, we turn to Star and Bowker’s work on

boundary objects [8, 9]. Actors from different
communities, with few shared points of reference and
little common stock of knowledge, have to manage the
tension between their divergent viewpoints. Star
introduces the concept of boundary object to explain
how such heterogeneous communities maintain
productive communication. We posit that documents
shared among groups with asymmetric access to
knowledge may serve as boundary objects. Star
describes four types of boundary objects. The first
type, repositories, refers to collections of documents
and so is not relevant for our discussion of individual
documents, but the remaining three types offer some
helpful ideas.

Star defines coincidence boundaries as common
objects that have the same boundaries but different
internal content. They arise when work is distributed
over a large-scale geographic area. Star points to the
state of California as a coincidence boundary for the
collaboration among citizen scientists and professional
biologists at UC Berkeley. The result is that work in
different sites and with different perspectives can be
conducted autonomously while cooperating parties
share a common spatial referent. Extending Star’s
thinking, we suggest that shared documents can specify
temporal or participatory boundaries.

Ideal types are documents such as diagrams,
atlases or other descriptions that do not accurately
describe the details of any one locality, thing or
activity but are rather vague and abstract. However, it
is this very quality which makes it useful to people
with different points of reference and stocks of
knowledge. Such a document offers a good-enough
road map to demarcate general elements, processes or
organization of the shared context while suppressing
distracting or conflicting details. This argument
suggests that people with symmetric access to
knowledge do not need to use ideal type documents to
facilitate their communication and collaboration.
However, people who share little common stock of
knowledge and exist at the periphery of the community
may need them to navigate and be able to read and use
a document. Together, coincidence boundaries and
ideal types allow us to further articulate our second
hypothesis:
Hypothesis 2: A document shared among people with

asymmetric knowledge is more likely to explicate
the context of use:
A. By specifying the appropriate participants,

times and places of its production and use
B. Through ideal types, such as diagrams, atlas,

road maps, which demarcate the specific
elements or organization of the shared work.

C. By demarcating the boundaries of the shared
work. These can be geographical or other

specific boundaries about the scope of the
work required by the project and the specific
document.

Finally, standardized forms include labels and
other forms that offer a uniform way to index
communicative content and form. While Star
highlights how standardized forms delete local
uncertainties from the shared information, we note the
converse, that the standardized forms in fact articulate
a basic structure for the document’s content and form.
This articulation might not be a very detailed
prescription, but nevertheless, it specifies the
information needed for the particular communicative
relationship supported by the document. However,
people with intimate knowledge of the work at hand
have less need for standardized forms. They know
what they have to get done and what information will
be relevant to the work at hand. Based on the notions
of standardized forms, we can refine our third
hypothesis:
Hypothesis 3: A document shared among people with

asymmetric knowledge is more likely to explicate
the form and content of its communication by:
A. Bringing regularity in semantics and objects

covered by one document to the next, e.g.,
through standardized forms that offer a
structured way to index communicative
content.

B. Requiring the users to make more details of
their work visible in their descriptions.

Provenance theory. Historical documents offer an
extreme case with a highly asymmetric relationship
between what a document prescribes and the
background knowledge users bring to its use. Thus,
archivists have long been concerned with how best to
preserve background knowledge to contextualize the
use and meaning of historical documents. In particular,
archivists keep track of a document’s provenance, i.e.,
where something comes from, who created it and what
sources it draws from [10] to preserve some of the
background knowledge that might otherwise be lost
over time and space. The notion of provenance has
recently been adopted by computer science to better
understand how information with multiple sources
flow from one application and file to another,
constantly getting recycled, reworked, and repackaged
[11]. People holding significant background
knowledge about a community may simply need to
know the author, title and date to position a document
in its historical context and the evolution of a project.
In contrast, newcomers most likely gain little from a
simple audit trail common to most blogging, software
development and document management systems.

With little background knowledge, such members
require more details to understand how a document fits
into the larger work process. We suggest that
documents shared among groups with asymmetric
access to knowledge will include more details about
the provenance of their communication, to explicate
their own history and thus allow the audience to better
contextualize their use. This leads us to our forth
hypothesis:

Hypothesis 4: A document shared among people with
asymmetric knowledge is more likely to explicate
the provenance of the communication by referring
to:
A. Where the communication comes from (e.g.,

the document creator, sources drawn from).
B. The genealogy of the communication and

ideas (e.g., who has accessed/used the
document and what they did with it).

3 Design of the research

Setting. To test the hypotheses developed above,
we sought a setting in which we could observe
documents being used across groups with different
kinds and levels of shared background knowledge. We
chose to study documents used in Free/Libre/Open
Source Software (FLOSS) development. Key to our
interest is the fact that most FLOSS projects are
developed by virtual teams comprising professionals
and users [12, 13]. These teams are close to purely
virtual in that developers coordinate their activity
primarily by means of a variety of computer-mediated
communication (CMC) tools [14, 15]. As development
proceeds, evidence of the processes and interactions
between tasks and participants is left in repositories of
documents, such as email lists, issue trackers, source
code management systems and so on. These channels
are characterized by documents of different genres that
make up the FLOSS genre repertoire.

A particular interest is how the use of these varied
documents depends on the patterns of relationships
among members of a FLOSS team. Several authors
have described successful FLOSS teams as having a
hierarchical [16] or onion-like structure [17-20]. At the
centre are the core developers, who contribute most of
the code and oversee the design and evolution of the
project. They are the only participants with the right to
commit code. Surrounding the core are perhaps ten
times as many co-developers. These individuals con-
tribute sporadically by reviewing or modifying code or
by contributing bug fixes. The co-developer group can
be much larger than the core, because the required
level of interaction is much lower. However, this lower
level of interaction leads to the co-developers sharing

less background knowledge
than the developers do.
Surrounding the developers
are the contributors or active
users: a subset of users who
use the latest releases and
contribute bug reports or
feature requests (but not
code). Users interaction with
developers is often chan-
neled through a constrained
set of genres. For example,
questions and bug reports
from users are valued, but
only if presented in the
“right way” [21]. Since they
are not otherwise involved in
development, we hypo-
thesized that active users
share even less background
knowledge with developers.

Sample. FLOSS projects create a variety of
documents, including code, documentation, feature
requests, bug reports and so on. To emphasize our
initial theoretical comparison, we chose three kinds of
documents with audiences with different degrees of
asymmetric knowledge, specifically bug reports,
source code patches, and commit messages.

Bug reports (e.g., as shown in Figure 1) are used
to report problems with a system. They can be created
by both end users and developers, but are intended for
developers, since developers are the only ones who can
actually fix bugs. A bug report can include discussions
between users and developers, e.g., if developers
request more information to characterize the bug. As a
result, this kind of document often spans two distinct
communities (users and developers) who have little
shared background knowledge. Projects often maintain
a bug reporting system and provide explicit
instructions about how and when to report a bug.

The second kind of document we considered was a
source code patch. FLOSS projects grow through a
process of incremental development as various
developers contribute code that fixes a bug or

implements a new feature. These code contributions
are shared with the other developers in the project in
the form a file representing the changes that were made
to move from one version of the source code to
another, called a patch file. These patches can be
applied to the source code files maintained by other
developers even if those developers have made some
changes of their own, as long as the changes do not
directly conflict. Patches are created by and used
primarily by developers, meaning that this kind of
document is shared amongst people with considerable
shared background knowledge. (The size of a patch file
precludes including one here as an illustration.)

The third kind of document we considered were
source code commit messages (as shown in Figure 2).
Most FLOSS projects use a source code control system
(SCCS) to maintain the source code for a project. The
SCCS keeps track of the various versions of the code
and allows privileged developers (i.e., only the core
developers) to store patches that are then shared with
other developer. When a patch is added (or
“committed”) to the SCCS, it is usual for the core
developer to write a short log message describing the

Figure 1. Example bug report from the Apache httpd project

(from https://issues.apache.org/bugzilla/show_bug.cgi?id=45287).

Figure 2. Example source code control system check in message from the MythTV project

(from http://svn.mythtv.org/trac/changeset/24896).

change. These exchanges are shared
among developers, i.e., people with
symmetric access to knowledge. Bug
reporting systems can be made to
interoperate with the SCCS so the
commit message for changes that fix
bugs can be linked to the bug report and
vice versa.

We collected examples of bug
reports, source code patches and
commit messages from different
FLOSS projects. However, to test our
hypotheses, it was necessary to also
look for explicit instructions or other
discussions of how bug reports, patches
and commit messages should be created
or used. Figure 3 shows an example of
instructions for creating a bug report;
Figure 4, for creating a commit
message. We collected instructions by
searching the project websites for
relevant documents. Two coders did the
search; the choice of documents was
confirmed through weekly discussion
with the authors.

 We chose documents by identifying all relevant
documents from a purposeful sample of FLOSS
projects. We decided to use purposeful sampling for
three reasons. First, there is no complete sampling
frame for FLOSS projects to support random sampling.
Researchers often use forges such as SourceForge as a
basis for sampling, but there are many different forges,
and many interesting projects use their own
infrastructure rather than a forge. Second, and more
important, given the skewed distribution of project
sizes, a random sample would have a large number of
small projects and few if any larger projects. However,
small projects would be less interesting for our

purpose, as there would be less opportunity for
communication across knowledge boundaries. Finally,
for our initial goal of examining the validity of our
hypotheses, it did not seem critical to be able to
generalize to the entire population of FLOSS projects,
which random sampling would support.

Given these considerations, projects were
purposively selected to achieve variation on size,
formality of organization (i.e., community-based vs.
with a foundation or corporate involvement) and target
audience (e.g., developer tools or code libraries vs.
end-user programs). To improve comparability, we
selected several projects from the same general
domain, namely web services, software development
and multimedia. Specifically, we examined:

1. WebKit (browser engine)
2. gcc (compiler)
3. ncurses (programming library)
4. Boost libraries
5. FFMPEG (digital video library and tool)
6. cURL (command line web tool)
7. wget (command line web tool)
8. Apache httpd (web server)
9. phpMyAdmin (web-based database admin-

istration tool)
10. VirtualBox (PC emulator)
11. OpenOffice (office suite)
12. Firefox (web browser)
13. MythTV (digital TV recorder)
14. Pidgin (IM client)

Figure 3. Instructions for reporting a bug in curl

(from http://curl.haxx.se/docs/bugs.html).

Figure 4. Example instructions for SCCS commit

messages (from
http://httpd.apache.org/dev/guidelines.html).

From the 14 project websites, we collected a total of
103 documents for analysis.

Coding. To test our hypotheses, we developed a
coding system for the various document characteristics
in the hypotheses (e.g., explicit statement of purpose or
standardized forms). We started with the definitions of
each of the concepts from the two theoretical sources.
We then inductively coded a small set of documents to
refine these definitions and to develop a coding
scheme. We then applied this coding system to the
collected documents. Coding was done in the NVivio
program by two coders. Disagreements in coding
between the coders were discussed to consensus; issues
that could not be resolved were discussed at regular
meetings among the coders and the authors to arrive at
an agreed set of codes. The resulting coded document
collection was then analyzed quantitatively and
qualitatively.

4 Results

 The section falls in two parts. First, we compare
bug reports spanning active users and core developers
(i.e., asymmetric access to knowledge) with commit
messages shared among core developers only (i.e.,
symmetric access to knowledge). We provide
illustrative examples of how these two types of
document are consistent with our hypothesis developed
above. Second, we compare bug reports versus source
code patch-related documents. Our more detailed
analysis reveal that while bug reports span active users,
co-developers and core developers (i.e., asymmetric
access to knowledge), patches involve not only core
developers but also co-developers (i.e., asymmetric
access to knowledge). The analysis extends our
hypothesis and provides further insights into what it
means to “write appropriately.”

4.1 Active users and core developers

We first compared the documents associated with
active users (i.e., contributors submitting bug reports)
and core developers (i.e., those who can commit the
patches to the SCCS). Specifically, we compared the
instructions given for creating and using bug reports to
instructions for commit messages. The difference was
striking: across the 14 projects we reviewed, we found
fewer than 10 documents explicitly addressing core
developers with instructions on how to commit
patches; several projects did not have any instructions
for core developers and the communication around
committing code. For projects that did have
documentation, it often focused on security-related
issues going beyond day-to-day code commits. In
contrast, we found more than 50 documents across the

14 projects detailing how active users should
communicate about newly-found bugs.

In the following, we provide illustrative examples
of how the creation and use of bug reports and SCCS
commit messages in the projects examined are
consistent with the hypothesis developed above.
Hypothesis 1: A document shared among people with

asymmetric knowledge is more likely to explicitly
state its purpose.
Examining the instructions for filing a bug report

for the curl project (Figure 3), we find that the purpose
of bug reports is clearly stated: to let developers know
about problems so they can fix them. The instruction
pages for other projects are similarly explicit. By
contrast, projects are less specific about the purpose of
SCCS commits. When there are instruction pages for
using the SCCS, e.g., in guidelines for the development
process (Figure 4), these do not clearly state the
purpose; rather, it seems to be assumed that the creator
will know what information would be needed by other
developers.
Hypothesis 2: A document shared among people with

asymmetric knowledge is more likely to explicate
the context of use:
A. By specifying the appropriate participants,

times and places of production and use
Consistent with this hypothesis, we find that bug

report instructions seem somewhat more explicit about
participants, time and places of production. In part,
these expectations are enforced by the technology, as
systems enforce roles with particular privileges on
documents, e.g., who can create, update, edit or
dispose of certain kinds of documents. Again, the
instructions for the commit messages specify less.

B. Through ideal types, such as diagrams, atlas,
road maps, which demarcate the specific
elements or organization of the shared work?

Comparison of the instructions for the two types of
documents seems consistent with the hypothesis. The
instructions for bug reports list what the creator and
receiver of a document have to do in order to
demarcate the shared work. By contrast, there is little
discussion of what someone might do when reading a
commit message, again reflecting an assumed shared
understanding of the process.

C. By demarcating the boundaries of the shared
work.

The instructions for bug reporting include
descriptions of what is in scope and what is out of
scope. For example, while a complex system such as
MythTV is built from many components, users rarely
perceive these internal components of a system, and so
consider all bugs as originating with the application.
Similarly, the designers of a system may have specific
use cases in mind for the project, and may not be

interested in expanding its functionality beyond those.
Therefore, bug-reporting instructions need to explain
how to localize a bug and caveats about what kinds of
bugs can be fixed and what kinds of new features will
be considered. In contrast, the description of the
commit message does not specify such boundaries.
Hypothesis 3: A document shared among people with

asymmetric knowledge is more likely to explicate
the form and content of its communication by:
A. Bringing regularity in semantics and objects

covered by one document to the next, e.g.,
through standardized forms that offer
structured way to index communicative
content.

As expected, a bug report document includes a
number of structured fields. The number of fields is
greatest for the most institutionalized project, Apache,
which uses the bugzilla bug tracking system.
Interestingly, the cURL project does not require a form
but encourages submissions by email, asking only for
some basic information. This difference may indicate
the assumption that users of cURL are sophisticated
enough to submit good bug reports without explicit
guidance, since cURL is a command-line tool. By
contrast, a SCCS commit message is just a plaintext
field; the message provided can be long or short. Some
projects do suggest including particular fields, e.g., a
reference to the bug report that the patch fixes, but
these are not required. Furthermore, exactly how the
patch should be described is left to the developer.

B. Requiring users to make more details of their
work visible in their descriptions.

The bug report document includes in addition to
the fields describing the bug, comments made by
developers or other users on the bug. These are
frequently used to keep track of work status. Commit
messages are also used as a way to indicate the work
done, though this is often done in only a summary
fashion and the messages can be quite cryptic.

Hypothesis 4: A document shared among people
with asymmetric knowledge is more likely to explicate
the provenance of the communication by referring to:

A. Where the communication comes from (e.g.,
the document creator, sources drawn from).

Somewhat consistent with the hypothesis, bug
reports go into detail about the origin of the document.
As illustrated in Figure 3, a bug report specifies details
such as the operating system and version, and what
sources the author consulted before composing the
document. In addition, the author must register in the
system, allowing others to track their documents.
Patches committed to the SCCS also articulate the
creator of the document, but the commit messages do
not provide any further detail about the sources from
which the author draws.

B. The genealogy of the communication and
ideas (e.g., who has accessed/used the
document and what they did with it).

Consistent with the hypothesis, we find that bug
reports offer more details about their genealogy
compared to commit messages. As illustrated by the
Apache bug report in Figure 1, the document includes
the history of the communication, developers cc’ed and
its dependencies. In contrast, the committed patch
(Figure 2) offer minimal information about the history
of the communication, though the example in Figure 4
does hint to the document’s genealogy by specifying
who submitted the bug and who revised it.

4.2 Active users and co-developers

We next compared the documents associated with
co-developers (i.e., contributors submitting patches)
and core developers (i.e., those who can commit code).
Specifically, we compared the instructions given for
creating and using bug reports and patches. .A closer
look at patch-related documents revealed that a
majority of them addressed newcomers to the FLOSS
project and not core developers or even co-developers.
Typical documents would specify the communication
process involved in patch creation and submission as a
way to help a newcomer become involved in the
endeavor. Many documents discussed both bug
reporting and patches as a way to become involved,
where submitting bugs was a first step followed by the
second step, creating a patch. Some projects explicitly
suggested that if you wanted to see your bug fixed you
might as well do it yourself. Based on these findings
we distinguished core developers with commit rights
from co-developers who contribute code but do not
have commit rights.

Looking across all the documents addressing both
bug reporting (i.e., active users) and patches (i.e., co-
developers) we found some sub-elements of our four
hypotheses covered in more documents than others.
For hypothesis 1, we found about the same number of
documents explicating the purpose of bug reports (7)
and patch submissions (6). For, hypothesis 2 we found
many more reference to the place for bug report
communication (25) compared to other aspects of the
communicative context (i.e., timing (0), participants
(4), ideal types (1), and boundaries (9). In contrast, we
found about equal number of references to the
boundaries (9), participants, place (10), and ideal types
(10) for communication about patches. When it comes
to hypothesis 3, both bug report and patch-related
documents explicated content expectations with a high
frequency compared to expectations about format,
visibility and the use of standardized forms. For
instance, we found 56 descriptions of content

expectations for bug reports compared to 12 format
descriptions, 11 standardized forms. Regarding
patches, the numbers were 24 documents explicating
content compared to 8 explicating format expectations
and only 2 standardized forms. Overall content
expectations were the most frequently explicated
expectation. Finally, for hypothesis 4, documents
explicating provenance were less frequent in particular
for bug report (4). For patches we found 12 references
to provenance.

5 Discussion

Our analysis compared two pairs of document
types: 1) bug reports versus commit messages and 2)
bug reports versus patches. First, we compared bug
reports, which span active users, co-developers and
core developers (i.e., high degree of asymmetric access
to knowledge) with commit messages involving only
core developers (i.e., symmetric access to knowledge).
Through analysis of the 14 FLOSS projects, we found
that documents supporting collaborators with asym-
metric knowledge do seem to explicate their own use
in more detail. Bug reports appear to do so by
articulating or prescribing their own 1) purpose,
2) context of use and 3) content and form and 4)
provenance in greater detail than commit messages
used by core community members with symmetric
access to project knowledge.

Second, we compared bug reports (active users,
co-developers, core developers) with patches (co-
developers and core developers). In other words, these
two sects of documents span participants with
asymmetric access to knowledge; however, one can
expect participants involved in source code patches to
share more background knowledge than bug report
participants. The comparison provided a more nuanced
picture of what gets explicated among people with
different types of asymmetric access to knowledge. We
will discuss this second point in more detail.

5.1 The prominence of process

The coding revealed communication patterns not
predicted in our initial hypothesis: A significant
number of documents explicated the process of bug
report and patch related communication. We found
approximately 60 references to the bug report
communication process and 70 descriptions of the
patch communication process. Here, it is worth
noticing that the ideal types found for patches (10) all
depicted the communication process related to patch
creation and submission.

Initially, we had not expected that FLOSS
participants would explicate the communication

process itself. Moreover, it emerged as the most
frequently explicated expectation among people with
asymmetric knowledge. In retrospect though, this focus
makes sense theoretically. Both contemporary genre
and boundary object literatures build on a practice
theory foundation that stipulates that social structures
and phenomena only exist as they get produced and
reproduced in people’s everyday social practices [22,
23]. We also note that we defined genres as “typified
communicative actions invoked in response to
recurrent situations” [5]. Consistent with both
perspective, it is understandable that FLOSS core
developers take the time to explicate the sequential
ordering of FLOSS communication activities.

5.2 Context versus content and format

By comparing documents related to bug reports
versus patches we notice a difference in how
frequently documents explicate the context of
communication (Hypothesis 2) compared to its content
and form (Hypothesis 3). Documents targeting active
users submitting bug reports tend to spend more time
explicating content and form (Hypothesis 3) compared
to patch related documents. The reverse is true for
Hypothesis 2. In the results, we noticed comparatively
more documents explicating the context of use
associated with source code communication, with the
exception of specifications of where communication
takes place. The latter type of reference is highly
prevalent among bug report documents.

One explanation might be that active users can
submit bug reports by simply knowing where to do so,
what content to provide and in what format. Core
developers do not need to explicate their expectations
for the communication further. The system
automatically records provenance relevant information.
Active users are prompted or even required to provide
basic information about a bug through the standardized
form that makes up the bug reporting system.
Submitting a patch is more involved, unpredictable and
requires a better understanding of the context of
communication (Hypothesis 2). Developers cannot
effectively engage in this type of communication
without understanding where it takes place, who are
involved, the boundaries of that work, and ideal
representations of the communication process.

As participants move from a peripheral position as
mere active users of bug reports to co-developers
submitting source code patches the knowledge they
require about communication practices changes.
Knowing where to go and what to communicate about
and in what format is the first step of a newcomer.
Being more specific about the context of
communication is the next step as one move further

toward the center of the FLOSS community. What
stays constant in those early phases is a need to
explicate the process of communication. By the time
you become a core developer, we hypothesize, you
know the ropes and you only need to explicate
communicative expectations in unusual cases such as
those relating to security breaches.

5.3 Beyond FLOSS

The approach developed in this paper contributes
the general understanding of documents in online
communities. We hope to extend the research beyond
FLOSS teams, for example to online communities such
as the Wikipedia community. Wikipedia does have an
inner group that has intimate knowledge of the system
and how the organization behind it works, and a larger
peripheral group of participants with a much smaller
stock of background knowledge. It would be
interesting to explore why Wikipedia does not seem to
require documents comparable to bug reports that
bridge groups with asymmetric access to knowledge.
Research could search for and describe other kinds of
documents that bridge between these groups. It could
be that there is no need to account for one’s work in
Wikipedia, as any member can commit a change to the
core text. In contrast, only core developers can change
the code in open source projects, thus requiring many
would-be active users to rely on communication with
others to accomplish their work. Power relations and
access to execute actions may play a role in how much
documents prescribe their use in various situations.

The present research also contributes to theory
development by questioning some of the existing
assumptions associated with document centric
research. First, genre studies to date have tended to
focus on groups with symmetric access to genre
expectations. Future research could explore how genre
expectations develop and are shared among people
with asymmetric access to genre expectations. In short,
how do genres work across various discourse
community boundaries? One possible outcome is that
documents spanning different asymmetries in
background knowledge need to explicate different
parts of the communication. Second, the inter-
dependencies of boundary object and provenance
theory calls for further exploration. In other words, our
preliminary findings suggest that effective boundary
object explicate their own provenance, i.e., go into
some detail about their own history, allowing users of
diverse communities to track the history of the object
across the involved communities.

Finally, the research contributes to system design
for online communities and digital collaborations. In
particular, the extensive use of standardized forms for

bug reports may provide some interesting insights. In
healthcare, for instance, one finds a push for more
standardized record keeping and information sharing.
If it is mainly groups with asymmetric access to
knowledge who benefit from using standardized forms,
one may assume that resistance to standardized
systems comes from members of groups with relative
symmetric access to knowledge in their use of
healthcare information systems. Using a standardized
form that require high regularity in semantics and
objects and great detail may seem like a waste of time
for someone with a large stock of background
knowledge in the specific area. A detailed
understanding of what characterize documents that
support collaborators with symmetric versus
asymmetric access to knowledge could help create
systems that tailor content to specific user groups.

6 Conclusion

Online communities and digital collaborations
bring together people with various access to and under-
standing of the work at hand. Yet, how do documents
serve diverse users, many of whom are literally not on
the same page? How does one write appropriately? The
present research contributes to both scholarship and
practice. First, the paper develops a framework based
on three previously unrelated bodies of literature that
characterize documents serving collaborators with
asymmetric access to knowledge versus documents
supporting those with symmetric knowledge. Drawing
on document-centric approaches, we hypothesize that
documents supporting asymmetric groups are likely to
be more prescriptive and explicate their own use
compared to documents supporting symmetric groups.
Second, our work suggests that practitioners of online
communities would benefit from explicitly considering
1) how much access to knowledge various participants
hold, and 2) how prescriptive and explicit documents
have to be to support those various groups. Systematic
knowledge of what such document variations becomes
essential for system developers hoping to support
heterogeneous online communities.

7 References

[1] C. D. Cramton, "The mutual knowledge problem and its
consequences for dispersed collaboration," Organization
Science, vol. 12, pp. 346–371, 2001.

[2] J. A. Cannon-Bowers and E. Salas, "Shared mental
models in expert decision making," in Individual and
Group Decision Making, N. J. Castellan, Ed., ed
Hillsdale, NJ: Lawrence Erlbaum Associates, 1993, pp.
221–246.

[3] H. H. Clark and S. E. Brennan, "Grounding in
communication," in Perspectives on Socially Shared
Cognition, L. B. Resnick, et al., Eds., ed Washington,
DC.: American Psychological Association., 1991, pp.
127--149.

[4] C. Bazerman, "System of genres and the enactment of
social intentions," in Genre and the New Rhetoric, A.
Freedman and P. Medway, Eds., ed London: Taylor &
Francis, 1995, pp. 79-104.

[5] W. J. Orlikowski and J. Yates, "Genre repertoire: The
structuring of communicative practices in
organizations," Administrative Science Quarterly, vol.
39, pp. 541-574, 1994.

[6] K. Crowston and B. H. Kwasnik, "Can document-genre
metadata improve information access to large digital
collections?," Library Trends, vol. 52, pp. 345-361, FAL
2003.

[7] J. Swales, Genre Analysis. Cambridge: Cambridge
University Press, 1990.

[8] S. L. Star and J. R. Griesemer, "Institutional Ecology,
'Translations' and Boundary Objects: Amateurs and
Professionals in Berkeley's Museum of Vertebrate
Zoology 1907-39," Social Studies of Science, vol. 19,
pp. 387-420, 1989.

[9] G. C. Bowker and S. L. Star, Sorting Things Out:
Classification and its consequences. Cambridge: MIT
Press, 1999.

[10] Y. L. Simmhan, et al., "A survey of data provenance in
e-science," Sigmod Record, vol. 34, pp. 31–36, Sep
2005.

[11] H. Lonsdale, et al., "Cutting and pasting up:
"Documents" and provenance in a complex work
environment," presented at the Hawai'i International
Conference on System Science (HICSS-43), Kauai, HI,
2010.

[12] E. A. von Hippel, "Innovation by user communities:
Learning from open-source software," Sloan
Management Review, vol. 42, pp. 82–86, Summer 2001.

[13] E. A. von Hippel and G. von Krogh, "Open Source
Software and the "Private-Collective" Innovation
Model: Issues for Organization Science," Organization
Science, vol. 14, pp. 209–213, 2003.

[14] E. S. Raymond, "The cathedral and the bazaar," First
Monday, vol. 3, 1998.

[15] P. Wayner, Free For All. New York: HarperCollins,
2000.

[16] W. Scacchi, "Free/Open Source Software Development
Practices in the Computer Game Community," IEEE
Software, vol. 21, pp. 56–66, 2004.

[17] A. Cox. (1998, 22 March). Cathedrals, Bazaars and the
Town Council. Available:
http://slashdot.org/features/98/10/13/1423253.shtml

[18] C. Gacek and B. Arief, "The many meanings of Open
Source," IEEE Software, vol. 21, pp. 34–40, 2004.

[19] J. Y. Moon and L. S. Sproull, "Essence of distributed
work: The case of Linux kernel," First Monday, vol. 5,
2000.

[20] M. A. Rossi, "Decoding the “Free/Open Source (F/OSS)
Software Puzzle”: A survey of theoretical and empirical
contributions," Università degli Studi di Siena,
Dipartimento Di Economia Politica, Working paper 424,
2004.

[21] E. S. Raymond and R. Moen. (2006). How to ask
questions the smart way. Available:
http://catb.org/~esr/faqs/smart-questions.html

[22] M. de Certeau, The Practice of Everyday Life. Berkeley:
University of California Press, 1984.

[23] C. Østerlund and P. Carlile, "Relations in Practice:
Sorting through practice theories on knowledge sharing
in complex organizations," The Information Society,
vol. 21, pp. 91-107, 2005.

