
The perils and pitfalls of mining SourceForge

James Howison and Kevin Crowston
Syracuse University

School of Information Studies
4-206 Center for Science and Technology, Syracuse, New York, USA

{jhowison, crowston}@syr.edu

Abstract

SourceForge provides abundant accessible data from
Open Source Software development projects, making it an
attractive data source for software engineering research.
However it is not without theoretical peril and practical pit-
falls. In this paper, we outline practical lessons gained from
our spidering, parsing and analysis of SourceForge data.

SourceForge can be practically difficult: projects are de-
funct, data from earlier systems has been dumped in and
crucial data is hosted outside SourceForge, dirtying the re-
trieved data. These practical issues play directly into anal-
ysis: decisions made in screening projects can reduce the
range of variables, skewing data and biasing correlations.

SourceForge is theoretically perilous: because it pro-
vides easily accessible data items for each project, tempt-
ing researchers to fit their theories to these limited data.
Worse, few are plausible dependent variables. Studies are
thus likely to test the same hypotheses even if they start from
different theoretical bases. To avoid these problems, analy-
ses of SourceForge projects should go beyond project level
variables and carefully consider which variables are used
for screening projects and which for testing hypotheses.

1 Introduction

We are interested in identifying factors that predict the
performance of Free, Libre and Open Source Software
(FLOSS) teams. As part of this inquiry, we chose to analyze
data from the SourceForge website, the largest repository of
FLOSS project data and, as such, an excellent source of data
on FLOSS team practices.

Our data collection process involved spidering numer-
ous Web pages, parsing the downloaded HTML files and
producing summary data for analysis. Our research encoun-
tered a number of practical pitfalls that this paper outlines.
Yet the difficulties are not merely practical—in our investi-
gation of SourceForge data and in other papers dealing with

SourceForge data we have encountered a number of theo-
retical caveats that we present here.

1.1 Research background

Our interest in FLOSS stems from a broader interest in
distributed teams. The focus of our research is on team
practices: coordination, development of collective mind and
individual and organizational learning. Therefore we intend
to examine a number of projects in detail with both qualita-
tive content analysis and ethnographic methodology. How-
ever given the sheer number of projects and the volumes
of data available, a prerequisite to our research is to iden-
tify appropriate projects for detailed study. We are seeking
both successful and unsuccessful projects using the model
of FLOSS project success we explored in [2].

We collected data from the project demographics, devel-
oper mailing lists and the SourceForge Tracker system—
which is largely bug tracking data. With this data we con-
ducted social network analysis to identify variance in com-
munication structure (Results reported in [4]), process anal-
ysis of bug fixing (Reported in [9]) and an analysis of the
speed with which projects fix bugs (Preliminary analysis re-
ported in [3]).

2 Practical Pitfalls in Data collection

After receiving no response to our requests for direct ac-
cess to the SourceForge database, we concluded that the
best available method of data collection would be to spi-
der and “screen-scrape” the data. We initially spidered the
SourceForge project pages in April 2002 and used this data
to identify 140 projects that had greater than seven listed
developers and more than 100 bugs in the system. These
criteria were theoretically chosen to match our interest in
distributed teams and the bug-fixing process. We spidered
the mailing lists and bug-tracking pages in April 2003, ac-
cessing data on over 62,110 bug reports.

There were three stages in our data collection: Spidering,
Parsing and Summarizing1. Each presented its own practi-
cal difficulties and necessary choices. We outline these, and
our solutions, below. We utilized Perl scripts for the data
collection—some comments are specific to Perl, most are
not. We conclude this section with testing strategies that we
recommend for mining software repositories.

2.1 Pitfalls in Spidering

Our spidering scripts utilized theWWW::Mechanize
module available fromCPAN2. The unfortunate necessity
of spidering large datasets can place large strains on the
servers. It is therefore important to be well behaved both
during the development of your scripts and in their use.

• Code a-n (--do-nothing or ‘dry-run’) option to
test your scripts.

• Consider running a local test server that mirrors the
structure of your target site.

• Store the full HTML download rather than parsing
‘live’. This ensures that any changes to the parser (ex-
pect many!) will not require a ‘re-spidering’ of your
target site.

• It is tempting to use forked processes to speed up spi-
dering. But beware of forking too many processes and
especially of ‘lost children’ who, due to a bug, might
‘bang away’ at the server for days—long after the par-
ent process is killed.

• Code a ‘wait loop’ into the spidering code to reduce the
density of your page requests. At the time we spidered
we were never banned from the SourceForge servers,
although we have recently heard that others have been.
It is believed that this is a new defence introduced by
SourceForge, the parameters of which are unknown.
The spidering process can take a long time, extending
over a number of days. It is therefore crucial to be sure
to collect all relevant data at the time of collection.

• Whenever feasible prepare your analysis scripts and
test them on data spidered from one or two projects,
ensuring that the data being collected is sufficient. Re-
peating the spidering stage can be very time consum-
ing.

• Be sure to store the time at which the page was
downloaded. This is especially important for time-
dependent analysis that has to account for censored
data (such as Event History analysis) but equally it is

1Our analysis scripts are available on request from the first author
2the Comprehensive Perl Archive Network—a ‘class-library’ for Perl.

required to anchor the effective date of your analysis
for comparative and longitudinal analyses.

• It is useful to store the number of pages of each type
downloaded, which gives a count of the expected num-
ber of Bugs that should be found after parsing. This
count can be used as a test for the accuracy of your
parsing scripts.

Spidering is clearly an area in which cooperation be-
tween research groups could present great benefits. It is also
vital to ensure that the SourceForge site is operating prop-
erly at the time you spider—this can be checked through the
Site Status page3.

2.2 Pitfalls in Parsing

Large websites are generated from HTML templates and
databases, giving them a fairly consistent structure suitable
for scripted parsing to extract the required data for analysis.
Yet the level of consistency is not high enough to ensure
that unexpected problems will not be faced.

• Simplify your parsing process as much as possible by
reducing excess or non-standard HTML on the pages.
Test the results of utilizing theHTML::Tidy module
or W3Cs ‘tidy’ application which does a good job of
standardizing the HTML and removing ‘cruft’. How-
ever be sure to check that this has not altered your tar-
get data in any way and that its effects are consistent
across your downloaded dataset.

• While regular expressions are vital to this type
of parsing, we found it far simpler to uti-
lize them in combination with HTML parsing
utilities such asHTML::Parser::Simple and
HTML::TableExtractor .

Many of the inconsistencies encountered were contained
only in a limited number of projects or even only within a
few bugs or mailing lists, yet they can significantly under-
mine your confidence in the cleanliness of your data. We
found these to be important points to be aware of in the
SourceForge data:

• Line breaks in fields are especially tough to observe
in regular debugging output. Consider converting line-
breaks to visible characters to avoid confusion.

• Unexpected characters in fields, such as non-ascii
characters or HTML entities. These often show-up as
errors in external modules being utilized making the
situation difficult to debug

3 http://sourceforge.net/docman/display_doc.php?
docid=2352&group_id=1#1076697351

http://sourceforge.net/docman/display_doc.php?docid=2352&group_id=1#1076697351
http://sourceforge.net/docman/display_doc.php?docid=2352&group_id=1#1076697351

• Another very frustrating bug was caused by user-
names that look like html (Thanks,<DeXtEr>
(gaim/482924)). Our Perl regex to parse the fields of
username and Real Name was:

Match Real Name (username) and variants
($item->{SubRealName},

$item->{SubmittedBy}) =
$nameField =˜ /(.*)\s*\((.*)\)$/;

• The layout of the information on status changes in
SourceForge was inconsistent in the table at the bottom
of the bug. Three separate methods had to be used to
find the correctclose_date . It appears that Source-
Forge has now changed this layout.

Many projects are inconsistent in their use of the Source-
Forge system.

• Be especially aware of projects that have moved old
data into the SourceForge system (e.g, tcl). The ‘offi-
cial’ fields may contain misleading data (e.g., a Start
Date reflecting the day of re-entry). While the free-
text fields may contain the data from the old system in
parsable form, researchers need to decide whether to
write a special case parser for this data or to drop the
project from the analysis.

• The SourceForge Tracker stores interaction informa-
tion for each Item as ‘follow-up messages’ in free-text
fields that are of arbitrary length and have inconsistent
endings as well as containing unexpected characters.
Seedynapi patch 207106 for a tricky example. Our
intention was to use XML for data storage between
scripts. Beware though:XML::Simple cannot read
all that it can write! We successfully usedStorable
(Perl data-structure serialization module) to pass this
data.

2.3 Pitfalls in Summarizing

Summarization requirements will vary according to the
intended analyses. We pursued Social Network Analysis
(SNA), which required interaction matrices, and event his-
tory analysis, which required data on lifetimes, bug status
and assignment. One problem in summarizing is missing
data. For example, SourceForge allows users to post anony-
mously, giving such posts the username of “nobody”. Since
we couldn’t predict the effect that different treatments of
the “nobody” data would have on our analysis, we created a
summarizer that produced each of four treatments for “no-
body data”:

• Baseline case: No treatment, “nobody” appears as an
individual.

• Deletion case: All nobody data deleted.

• Each “nobody” as separate individual.

• One “nobody” per Item or thread i.e. “nobody340078”
as separate individual.

We were then able to compare the effect that these dif-
ferent treatments had on the outcome of our analysis (we
found surprisingly little difference between the last two
strategies)[4].

An opposite problem is that a number of the fields of
interest turn out to be multi-valued. For example, a project
can be given a development status ofplanning , alpha
andbeta simultaneously. To retain these multiple values
would make analysis very complex. Researcher ought to
make principled decisions about how to handle such cases,
rather than letting them be made for convenience in parsing
or summarizing.

A final problem is that different analysis tools will re-
quire different data output formats. We tested over 5 dif-
ferent Social Network analysis packages before settling on
the sna module fromr-project for its high degree of
scriptability, vital for large data sets. We also used the
NetMiner application for its presentable graphics capa-
bilities. Each program required output in subtly different
formats. We found that our summarization methods were
being used in a number of different scripts, making summa-
rization an excellent candidate for modularization.

2.4 Testing Strategies

On reflection, our testing strategy should have been con-
siderably more systematic. We would recommend these
techniques to those pursuing large data-collection projects
involving spidering and parsing:

• Random selection of test pages (at least three from
each project) that should be checked by hand to cre-
ate known good output.

• When making changes to the parser or summarizer,
preserve the output of earlier runs to check for unex-
pected regressions. One strategy would be todiff old
and new results, noting the items whose values have
changed and check that against the intended and antic-
ipated changes.

• Remember to note in your comments the bug reports
for which special cases of code are written (or alter-
nations in regular expressions). It is surprising how
quickly these are forgotten in the flow of bug-fixing.

• Further, it would be useful to create test cases for each
quirk identified, both to ensure the correctness of a pro-
posed solution and to prevent regressions.

• Test cases could be shared with others seeking to parse
similar data from the repository of interest (e.g., we
could have a location to share test cases for Source-
Forge, CVS, Bugzilla, Subversion, mailing lists etc.)

3 Interpretation and Analysis

There are several important issues to consider when un-
dertaking analysis and interpretation of SourceForge data.
Those seeking to utilize this data must carefully consider
their choice of screening variables and keep these separate
from their analysis variables.

3.1 Challenges in cleaning dirty data

Despite the template and database nature of the Source-
Forge website there is a significant amount of ‘dirty’ data
and it is hard to be sure of the extent of these problems
without time-consuming and costly manual checking.

As described above, there is a large amount of anony-
mous data in the SourceForge system that cannot be at-
tributed to any individual participant. For some analyses
this will not have an impact but it could be crucial for others.
Also described above, there is data that has been ‘dumped’
into the system, yielding valid yet totally inaccurate data.

Furthermore SourceForge has become the ‘repository
of record’ for the FLOSS community, yet for important
projects it is not the ‘repository of use’. For examplevim ,
an important programmers editor, is listed at SourceForge
but has only 3 developers and 0% activity and has not re-
leased any files—all clearly wrong. The page is simply a
placeholder that points to thevim ‘repository of use’. It
is likely that there are many entries like this and identifying
them is difficult, at the very least it requires the use of a data
source outside of SourceForge.

3.2 Skewed and truncated data

Firstly the projects in SourceForge are of highly different
shapes, sizes and structures, which leads to much of the data
being highly skewed. For example our screening variables
(> 7 developers and> 100 bugs) reduced the projects of in-
terest from the 52,000 hosted by SourceForge at the time of
spidering to only 140 projects. This skew extends to project
activity and is reported in the findings of [6]. It appears that
there are a very large number of one-person projects entered
into SourceForge that never progress beyond announcement
[8].

The problems above, and their possible solutions, may
yield truncated results which complicate variance analyses,
such as regressions. When it is necessary to choose screen-
ing variables to reduce the dataset to the projects of theoreti-
cal interest, the analysis must acknowledge that the variance

in those screening variables has been significantly reduced
and attempt to compensate for this reduction (or better still
avoid the further use of the use of that variable at all).

Even avoiding the use of screening variables may not be
sufficient, because when a dataset is reduced by screening
on one variable there may be significant truncation of cor-
related variables. Even worse, it is difficult to know this
in advance without collecting all the data to look for these
correlations.

●

●

●

●●

● ●

●

●

● ●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

var1

va
r2

● ●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

var1.trunc

va
r2
.tr
un
c

Figure 1. Truncating the upper range of var1
reduces the correlation from 0.91 to 0.52

These difficulties are further compounded by the diffi-
culty in predicting the direction of the impact of the trunca-
tion. For example truncating a variable that is highly var-
ied may result in a variable that appears to be less varied,
increasing correlations. But truncating a variable that ex-
hibits low variance can cause the variable to increase its rel-
ative variance, leading to reduced correlations (Figure 1).
Equally a decision to truncate only sections of a variable
(either the top and bottom, or the mid-range) can have quite
unpredictable effects (in Figure 2 substantially increasing
the correlation).

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

var1

va
r2

● ●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

var1.split

va
r2
.s
pl
it

Figure 2. Splitting the distribution increases
the correlation from 0.57 to 0.99

4 Peril in Research Design

SourceForge is a highly available dataset, but it pro-
vides only a limited number of easily available variables,

that is, variables that are pre-calculated and available from
each project’s homepage or in full lists. Examples include:
Number of developers, Project status, Activity, Downloads,
Page Views and Numbers of Tracker items. The restricted
amount of data poses problems in research design.

One problem is that there are only a limited number of
ways of mapping theoretical constructs on to these avail-
able variables. As a result, studies using SourceForge data
may end up with similar regression equations while purport-
ing to study quite divergent concepts. For example, Crow-
ston and Scozzi present an analysis of OSS communities
as virtual organizations by applying Katzy and Crowston’s
competency rallying theory to the case of OSS development
projects [7, 5]. The theory explains project success in terms
of the availability of competencies, the ability of developers
to recognize opportunities, the ability of project to marshall
resources and the ability to manage short-term cooperation,
but end up regressing downloads, development status and
activity against development status, number of administra-
tors, popularity of the programming language, number of
developers, lifespan, activity and factors for audience and
topic (omitting as necessary the dependent variables as in-
dependent variables). Chengalur-Smith and Sidorova start
with a population ecology perspective on projects, but pro-
pose to regress project survival against number of releases,
number of development statuses, audiences and topics, age
and number of developers [1].

A second problem is that these available variables may
have low validity as measures in any particular theory. For
example, many studies have chosen to use downloads as
their dependent variable, arguing that it is a plausible proxy
for “use”. This is problematic for two reasons. Firstly, in the
IS literature “use” is already largely a proxy for “impact”
[10], so downloads becomes a proxy for a proxy. Secondly,
downloads is not even a good proxy for use, being both
inaccurate and systematically biased. Much fundamental
FLOSS software is distributed through distributions (e.g.,
RedHat CDs or Debian’sapt-get system and FreeBSD’s
ports) and therefore not often downloaded from Source-
Forge (how often has a user downloaded thevim program
or theXfree86 distribution directly from SourceForge?).
Conversely userland packages facing frequent changes in
their environment (e.g.,Gaim, an instant messenger pack-
age), or new packages not yet included in a distribution,
would have higher downloads. We deal with similar diffi-
culties with alternative dependent variable measures and de-
velop, hopefully, a more useful approach to FLOSS project
success in [3, 2].

5 Conclusion

SourceForge remains an excellent source of data for
those interested in studying the processes of FLOSS teams

and distributed teams in general—one of many such repos-
itories. Screen-scraping remains an unfortunate necessity
faced by researchers seeking to mine online repositories.
We have presented our experiences in mining SourceForge,
and made available our code. We have also sought to high-
light the general lessons for mining software repositories.

Regardless of data collection method those wishing to
use sourceforge data face significant challenges in cleaning,
screening and interpreting the data, we have outlined those
we have identified and the solutions we employ: researchers
should be tuned to the impact of their screening and attempt
to minimize the impact of that screening on their analyses.

Finally, as a discipline, we must be conscious of the lim-
itations of the ‘ready-made’ data-points available through
repositories such as SourceForge. Researchers must take
care in operationalizing their theoretical constructs and
should be prepared to go well beyond the “low hanging
fruit”.

References

[1] S. Chengalur-Smith and A. Sidorova. Survival of open-
source projects: A population ecology perspective. InProc.
of 24th International Conference on Information Systems
(ICIS ’03, Seattle, WA., 2003.

[2] K. Crowston, H. Annabi, and J. Howison. Defining open
source software project success. InProc. of International
Conference on Information Systems (ICIS), 2003.

[3] K. Crowston, H. Annabi, J. Howison, and C. Masano. To-
wards a portfolio of FLOSS project sucess measures. InSub-
mitted to ICSE Open Source Workshop, 2004.

[4] K. Crowston and J. Howison. The social structure of open
source software development teams. InOASIS 2003 Work-
shop (IFIP 8.2 WG), 2003.

[5] K. Crowston and B. Scozzi. Open source software projects
as virtual organizations: Competency rallying for software
development. IEE Proceedings on Software, 149(1):3–17,
2002.

[6] R. A. Ghosh, G. Robles, and R. Glott. Free/libre and open
source software: Survey and study floss. Technical report,
International Institute of Infonomics,, University of Maas-
tricht: Netherlands, 2002.

[7] B. R. Katzy and K. Crowston. A process theory of compe-
tency rallying in engineering projects. InProc. of CeTIM,
Munich: Germany, 2000.

[8] S. Krishnamurthy. Cave or community?: An empirical ex-
amination of 100 mature open source projects.First Mon-
day, 7(6), June 2002.

[9] B. Scozzi and K. Crowston. Coordination practices for bug
fixing within FLOSS development teams. Technical report,
Syracuse FLOSS project, 2004.

[10] P. B. Seddon. A respectification and extension of the de-
lone and mclean model of is success.Information Systems
Research, 8(3):240–253, 1997.

	Introduction
	Research background

	Practical Pitfalls in Data collection
	Pitfalls in Spidering
	Pitfalls in Parsing
	Pitfalls in Summarizing
	Testing Strategies

	Interpretation and Analysis
	Challenges in cleaning dirty data
	Skewed and truncated data

	Peril in Research Design
	Conclusion

