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The bug fixing process in proprietary and  
Free/Libre Open Source Software:  

A coordination theory analysis 

Abstract 

To support business process transformation, we must first be able to represent 

business processes in a way that allows us to compare and contrast them or to design new 

ones. In this paper, I use coordination theory to analyze the bug fixing processes in the 

proprietary operating system development group of a large mini-computer manufacturer 

and for the Free/Libre Open Source Software Linux operating system kernel. Three 

approaches to identifying dependencies and coordination mechanisms are presented. 

Mechanisms analyzed include those for task assignment, resource sharing and managing 

dependencies between modules of source code. The proprietary development 

organization assigned problem reports to engineers based on the module that appeared to 

be in error, since engineers only worked on particular modules. Alternative task 

assignment mechanisms include assignment to engineers based on workload or voluntary 

assignment, as in Linux. In the proprietary process, modules of source code were not 

shared, but rather “owned” by one engineer, thus reducing the need for coordination. In 

Linux, where multiple developers can work on the same modules, alternative resource 

sharing mechanisms have been developed to manage source code. Finally, the proprietary 

developers managed dependencies between modules informally, relying on their personal 

knowledge of which other engineers used their code. The Linux process allows 

developers to change code in multiple modules, but emphasizes modularity to reduce the 

need to do so.  
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A coordination theory analysis of bug fixing in  
proprietary and free/libre open source software 

Introduction 

To support business process transformation, we must first be able to represent 

business processes in a way that allows us to compare and contrast them or to design new 

ones (Malone et al., 1999). Consider the software problem (bug) fixing process, a process 

that I will use as a source for examples in this paper. Customers having problems with a 

piece of software (a bug) report the problems to its developers, who (they hope) 

eventually provide some kind of solution (a bug fix). In this paper, I compare the bug 

fixing processes for a proprietary mini-computer operating system and for the Free/Libre 

Open Source Software (FLOSS)2 Linux kernel project. The company I studied had an 

elaborate process to receive problem reports, filter out duplicates of known problems, 

identify which modules of the system are apparently at fault for novel problems and route 

the reports to the software engineers responsible for those modules. Along the way, an 

engineer might develop a workaround (i.e., a way to avoid the problem); the responsible 

software engineer might develop a change to the code of part of the system (i.e., a patch) 

to fix it. The patch is then sent to other groups who test it, integrate it into the total 

system and, eventually, send it to the customers who originally had the problem. (A more 

                                                 
2  FLOSS is a broad term used to embrace software that is developed and released under some sort of free 

or open source license. The free software and the open source movements are distinct and have 
different philosophies but mostly common practices. The licenses they use allow users to obtain and 
distribute the software’s original source, to redistribute the software, and to publish modified versions 
as source code and in executable form. While the open source movement views these freedoms 
pragmatically (as supporting a development methodology), the Free Software movement regards them 
as human rights, a meaning captured by the French/Spanish word ‘libre’ and by saying “think of free 
speech, not free beer”. (See http://www.gnu.org/philosophy/ and http://opensource.org/ for more 
details.) This paper focuses on development practices, which we expect to be largely shared across the 
virtual teams in both movements. However, in recognition of these two communities, we use the 
acronym FLOSS, standing for Free/Libre and Open Source Software, rather than the more common 
OSS. 
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detailed description of this process appears below.) The Linux bug fixing process (which 

has evolved over time) has a similar but different set of steps. The description and 

comparison of these processes raises several questions that are key for business process 

transformation: Why is the process structured this way, with finely divided responsibility 

for different parts of the process? In what ways are the two processes (proprietary and 

FLOSS) similar or different and what are the implications of these similarities and 

differences? And more simply, how else could software development organizations 

approach problem fixing?  

In the remainder of this paper, I present one approach to answering these 

questions. In the next section I briefly review coordination theory and show how it can 

guide the analysis and transformation of a process. The bulk of the paper presents a 

detailed example. The following sections describe the case sites—the software 

development division of a minicomputer manufacturer and the Linux kernel project—and 

the data collection and analysis methods. The analysis section presents the dependencies 

and coordination mechanisms identified in the cases. The paper concludes by briefly 

evaluating the coordination theory approach and discussing its application in other 

settings.  

Theory: A coordination theory approach to business processes 

In this paper, I use coordination theory as an approach to analyzing processes and 

for understand their diversity. If we examine many companies, we will observe a wide 

variety of approaches to the software bug fixing process. For example, in other 

companies (and other parts of the company I studied), when a problem report arrives, it is 

simply assigned to the next free engineer. If we examine many processes, we will see a 

similar range of possibilities. Individuals (or firms) may be either generalists who 
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perform a wide variety of tasks, or specialists who perform only a few. Activities may be 

assigned to actors within a single organization, as with bug fixing; other assignments may 

take place in a market, as with auditing, consulting and an increasingly wide variety of 

services; and finally, assignments may be given to others in a network of corporations.  

Despite this diversity, when we systematically compare processes, patterns 

emerge. Organizations that perform the same task often perform essentially the same 

basic activities. For example, organizations that fix software bugs must all diagnose the 

bug, write code for a fix and integrate the change with the rest of the system. Looking 

more broadly, many engineering change processes have activities similar to those for 

software.  

While these general activities are often the same, the processes differ in important 

details: how these large abstract tasks are decomposed into activities, who performs 

particular activities and how the activities are assigned. In other words, processes differ 

in how they are coordinated. However, even with coordination there are common 

patterns: similar problems arise and are managed similarly. For example, nearly every 

organization must assign activities to specific actors and task assignment mechanisms can 

be grouped into a few broadly similar categories. Such mechanisms are the subject matter 

of coordination theory.  

Coordination theory 

To analyze these patterns of coordination, I use the framework developed by 

Malone and Crowston (1994), who define coordination as “managing dependencies 

between activities” (p. 90). They define coordination theory as the still developing body 

of “theories about how coordination can occur in diverse kinds of systems” (p. 87). 

Malone and Crowston analyze group action in terms of actors performing interdependent 
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activities to achieve goals. These activities may also require or create resources of 

various types (defined broadly as anything necessary for or the product of an activity, 

including raw materials, tools, information and the effort of actors).  

For example, in the case of software bug fixing, activities include diagnosing the 

bug, writing code for a fix and integrating it with the rest of the system, as mentioned 

above. Actors include the customers and various employees of the software company. In 

some cases, it may be useful to analyze a group of individuals as a collective actor (Abell, 

1987). For example, to simplify the analysis of coordination within a particular subunit, 

the other subunits with which it interacts might all be represented as collective actors. 

The goal of software bug fixing appears to be eliminating problems in the system, but 

alternative goals—such as appearing responsive to customer requests—could also be 

analyzed. In taking this approach, we adopt Dennett’s (1987) intentional stance: since 

there is no completely reliable way to determine someone’s goals (or if indeed they have 

goals at all), we, as observers, can only impute goals to the actors and analyze how well 

the process accomplishes these goals. Finally, resources include the problem reports, 

information about known problems, computer time, software patches, source code and so 

on.  

It should be noted that in developing this framework, Malone and Crowston 

describe coordination mechanisms as relying on other necessary group functions, such as 

decision making, communications and development of shared understandings and 

collective sense-making (Britton et al., 2000; Crowston & Kammerer, 1998). To develop 

a complete model of some process would involve modelling all of these aspects: 

coordination, decision-making and communications. In practice, our analyses have 

tended to focus on the coordination aspects, bracketing the other phenomenon.  
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According to coordination theory, actors in organizations face coordination 

problems that arise from dependencies that constrain how tasks can be performed. These 

dependencies may be inherent in the structure of the problem (e.g., components of a 

system may interact with each other, constraining the kinds of changes that can be made 

to a single component without interfering with the functioning of others) or they may 

result from decomposition of the goal into activities or the assignment of activities to 

actors and resources (e.g., two engineers working on the same component face 

constraints on the kind of changes they can make without interfering with each other).  

To overcome these coordination problems, actors must perform additional 

activities, which Malone and Crowston call coordination mechanisms. For example, a 

software engineer planning to change one module in a computer system must first check 

if the changes will affect other modules and then arrange for any necessary changes to 

modules that will be affected; two engineers working on the same module must each be 

careful not to overwrite the other’s changes. Coordination mechanisms may be specific to 

a particular setting, such as a code management system to control changes to software, or 

general, such as hierarchical or market mechanisms to manage assignment of activities to 

actors or other resources.  

The first key claim of coordination theory is that dependencies and the 

mechanisms for managing them are general, that is, a particular dependency and a 

mechanism to manage it will be found in a variety of organizational settings. For 

example, a common coordination problem is that a particular activity may require 

specialized skills, thus constraining which actors can work on it; this dependency 

between an activity and an actor arises in some form in nearly every organization. 
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Coordination theory thus suggests identifying and studying common dependencies and 

their related coordination mechanisms across a wide variety of organizational settings.  

The second claim is that there are often several coordination mechanisms that 

could be used to manage a dependency, as the task assignment example illustrates. 

Possible mechanisms to manage the dependency between an activity and an actor include 

manager selection of a subordinate, first-come-first-served allocation and various kinds 

of markets. Again, coordination theory suggests that these mechanisms may be useful in 

a wide variety of organizational settings. Organizations with similar activities to achieve 

similar goals will have to manage the same dependencies, but may choose different 

coordination mechanisms, thus resulting in different processes.  

Finally, the previous two claims taken together imply that, given an organization 

performing some task, one way to generate alternative processes is to first identify the 

particular dependencies and coordination problems faced by that organization and then 

consider what alternative coordination mechanisms could be used to manage them.  

To summarize, according to coordination theory, the activities in a process can be 

separated into those that are necessary to achieve the goal of the process (e.g., that 

directly contribute to the output of the process) and those that serve primarily to manage 

various dependencies between activities and resources. This conceptual separation is 

useful because it focuses attention on the coordination mechanisms, which are believed to 

be a particularly variable part of a process, thus suggesting an approach to redesigning 

processes. Furthermore, coordination mechanisms are primarily information-processing 

activities and therefore, good candidates for support from information-technology.  

The aim of coordination theory is not new: defining processes and attempting to 

improve performance has been a constant goal of business process transformation. The 
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focus on dependencies is also a recurring theme. Even the idea of substitute mechanisms 

has been suggested; for example, Lawler (1989) argues that the functions of an 

organization’s hierarchy, many of which are ways of coordinating lower level actions, 

can be accomplished in other ways, such as work design, information systems or new 

patterns of information distribution. However, coordination theory makes many of these 

earlier notions more precise by decomposing tasks and resources. For example, the 

classic distinction among sequential, interdependent and network processes of organizing 

can be decomposed into particular dependencies managed by particular mechanisms. In 

this view, a network (Powell, 1990), for example, is not a property of a collection of 

organizations per se, but rather a restriction on which actor is chosen to work on a 

particular task (i.e., how a task-actor dependency is managed). In a hierarchy, a task is 

assigned to an actor chosen from within the organization, e.g., based on specialization or 

managerial decision; in a market, from the set of suppliers active in the market, e.g., by 

bidding; and in a network, from the appropriate member of the network.  

A typology of coordination mechanisms 

As a guide to such analyses, Crowston (1991a, 2003) presents a typology of 

dependencies and associated coordination mechanisms. The typology of dependencies 

and examples of associated coordination mechanisms is shown in Table 1.  

Insert Table 1 about here 

The main dimension of the typology involves the types of objects involved in the 

dependency. To simplify the typology, we compress the elements of Malone and 

Crowston’s (1994) framework into two groups: tasks (which includes goals and 

activities) and resources used or created by tasks (which here includes the effort of the 

actors). Logically, there are three kinds of dependencies between tasks and resources: 
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those between two tasks, those between two resources and those between a task and a 

resource. (As a further simplification, dependencies between more than two elements are 

decomposed into dependencies between pairs of elements.) 

Some aspects of this typology are more developed than others; for example, task-

task dependencies have been analyzed in some detail, while the others have not. 

Specifically, task-task dependencies have been further distinguished by considering what 

kinds of resources are shared by the two tasks (e.g., shareable or reusable resources), how 

these resources are used (as an input or as an output of the task) and whether the required 

uses conflict with each other (e.g., two different uses of a non-reusable resource).  

For each dependency, a brief description of an associated coordination 

mechanism is given. For example, to manage a task-resource dependency, the typology 

notes that it is necessary first to identify required and available resources, then to choose 

a particular resource and finally to assign the resource. Managing a prerequisite 

dependency (a task-task dependency) requires ordering the tasks, ensuring that the output 

of the first is usable by the second and managing the transfer of the resource from the 

first to the second. These activities can be performed in many different ways. For 

example, a manager with a task to assign might know of the available resources or might 

have to spend time hunting them down. Usability might be managed reactively by testing 

the resource and returning problems or proactively by involving the user in the 

production of the resource.  

Research setting and data collection  

Coordination theory is intended to analyze organizations in a way that facilitates 

redesign. The question is, does this approach work; that is, can we find dependencies and 

coordination mechanisms in a real process? Does this analysis help explain commonly 
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used alternative processes or suggest novel ones? I undertook two case analyses to 

answer these questions, in a setting where the precise processes for decomposing and 

completing tasks were observable. In the remainder of this paper, I present the 

application of coordination theory to a particular process, thus grounding the claims of 

coordination theory within a carefully specified organizational domain. In this section, I 

provide an overview of the research setting, the data collection and data analysis 

approaches.  

Data collection 

Proprietary software. The proprietary software organization in this example was 

the minicomputer division of a large corporation. In 1989, when the study started, the 

entire corporation had sales of approximately $10 billion and roughly 100,000 

employees. The computer division produced several lines of minicomputers and 

workstations and developed system software for these computers. The group in this study 

was responsible for the development of the kernel of a proprietary operating system, a 

total of about one million lines of code in a high-level language.  

The analysis of the proprietary software development process presented here was 

based on 16 interviews with 12 individuals, including six software engineers, two support 

group managers and three support group members and one marketing engineer. The 

interviews were carried out during six trips to the company’s engineering headquarters; 

most were one to two hours long. Additionally, a former member of the software 

development group assisted in the data collection and analysis.  

As discussed above, coordination mechanisms are primarily information-

processing activities. Therefore, this study adopted the information processing view of 

organizations, which focuses on how organizations process information (Galbraith, 1977; 
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March & Simon, 1958; Tushman & Nadler, 1978). The goal of the data collection was to 

uncover, in March and Simon’s (1958) terms, the programs used by the individuals in the 

group. March and Simon suggest three ways to uncover these programs: 1) interviewing 

individuals, 2) examining documents that describe standard operating procedures and 3) 

observing individuals. I relied most heavily on interviews. As March and Simon (1958) 

point out, “most programs are stored in the minds of the employees who carry them out, 

or in the minds of their superiors, subordinates or associates. For many purposes, the 

simplest and most accurate way to discover what a person does is to ask him” (p. 142).  

I started the data collection by identifying different kinds of actors in the group. 

This identification was done with the aid of a few key informants, and refined as the 

study progressed. When available, formal documentation of the process was used as a 

starting point. For example, a number of individuals designed and coded parts of the 

operating system, all working in roughly the same way and using the same kinds of 

information; each was an example of a “software engineer actor.” However, response 

centre or marketing engineers used different information, which they processed 

differently. Therefore they were analyzed separately.  

Interview subjects were identified by the key informants, based on their job 

responsibilities; there was no evidence, however, that their reports were atypical. I then 

interviewed each subject to identify the type of information received by each kind of 

actor and the way each type was handled. Data were collected by asking subjects: 1) what 

kinds of information they received; 2) from whom they received it; 3) how they received 

it (e.g., from telephone calls, memos or computer systems); 4) how they processed the 

different kinds of information; and 5) to whom they sent messages as a result. When 
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possible, these questions were grounded by asking interviewees to talk about items they 

had received that day.  

I also collected examples of documents that were created and exchanged as part 

of the process or that described standard procedures or individual jobs. Not surprisingly, 

the process as performed often differed from the formally documented process. For 

example, there was a formal method for tracking which engineers used which interfaces, 

but in practice most engineers seemed to rely on their memories. It was this informal 

process (as well as the formal process surrounding it) that I sought to document.  

The initial product of these studies was a model of the change process (presented 

in more detail below) that described the actors involved, which steps each performed and 

the information they exchanged. It should be noted that data were collected about only 

one group because my contact at this company worked in that group. My impression 

from interviews with individuals who had worked in or who interacted with other groups, 

was that processes were similar in other software development units, however, I have no 

direct information about other groups.  

Relying on interviews for data can introduce some biases. First, people do not 

always say what they really think. Some interviews were conducted in the presence of 

another employee of the company, so interviewees may have been tempted to say what 

they think they should say (the “company line”), what they think I want to hear or what 

will make themselves or the company look best. Second, individuals sometimes may not 

know the answer or may be mistaken.  

To control for interview bias, I cross-checked reported data with other informants. 

I also used the modelling process as a check on the data, applying the negative case study 

method (Kidder, 1981). In this method, researchers switch between data collection and 
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model development, using predictions or implications of the model to guide the search 

for disconfirming evidence. When such data cannot be found, the model has been refined 

to agree with all available data.  

Linux. As a comparison to the proprietary software company, I examined the bug 

fixing processes for the kernel of the Linux operating system. Linux is a FLOSS Unix-

like operating system. The original release was created by Linus Torvalds in 1991, but it 

has since grown with the contributions of literally thousands of developers (Moon & 

Sproull, 2000) and is now a fully-featured and widely used system. The most recent 

release, 2.6 in 2004, is reported to have more than 4 million lines of code (Wheeler, 

2005). A unique feature of Linux is the dual version approach to development, in which 

even-numbered versions (2.2, 2.4, 2.6, etc.) are intended to be stable for end users and 

odd-numbered versions (2.1, 2.3, 2.5, etc.) are for development and may therefore be 

unstable.  

FLOSS development differs greatly from proprietary development in that it is not 

owned by a single organization. Developers contribute from around the world, meet face-

to-face infrequently if at all, and coordinate their activity primarily by means of 

computer-mediated communications (CMC) (Raymond, 1998; Wayner, 2000). These 

teams depend on processes that span traditional boundaries of place and ownership. The 

research literature on software development and on distributed work emphasizes the 

difficulties of distributed software development, but the case of FLOSS development 

presents an intriguing counter-example. What is perhaps most surprising about the 

FLOSS process is that it appears to eschew traditional project coordination mechanisms 

such as formal planning, system-level design, schedules, and defined development 

processes (Herbsleb & Grinter, 1999). As well, many (though by no means all) 
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programmers contribute to projects as volunteers, without working for a common 

organization or being paid. Characterized by a globally distributed developer force and a 

rapid and reliable software development process, effective FLOSS development teams 

somehow profit from the advantages and overcome the challenges of distributed work 

(Alho & Sulonen, 1998). 

My analysis of the Linux bug change process is based primarily on published 

descriptions of the process (e.g., Moon & Sproull, 2000). These analyses have been 

extended by analysis of Linux kernel bug tracking logs. It is important to note that the 

Linux process has changed over time, with a particularly significant change for the 2.6 

version (Larson, 2004). Therefore, I will discuss the process as it appeared at different 

points in time. For ease of reference, I will refer to these as the original and current 

change processes, respectively.  

The bug fixing processes 

In this section, I briefly describe the bug fixing processes as implemented in the 

proprietary and Linux development processes.  

The proprietary bug fixing process. The proprietary software organization stated 

the following goals for the change process:  

• ensure that all critical program parameters are documented: customer 

commitments, cross-functional dependencies. 

• ensure that a proposed change is: reviewed by all impacted software development 

units/functions and formally approved or rejected. 

• ensure that document status is made available to all users: stable (revision number 

and date); changes being considered; approved/rejected/withdrawn. 

• ensure changes are made quickly and efficiently 
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In addition, the change process had two larger goals: maintain the quality of the 

software and to minimize the cost of changes. To maintain quality, the process ensured 

that changes were made by someone who understands the module involved, that changes 

are fully tested and that the module and its documentation were kept in agreement. To 

reduce the cost of changes, the change process required that changes be made only to fix 

a problem or add an authorized enhancement. As one manager put it, the “formal change 

control process is there to prevent changes.”  

The activities performed for a typical change in the proprietary process are 

summarized in the flowchart shown in Figure 1. Although no particular bug is necessarily 

treated in exactly this way, these activities were described as typical by my interviewees. 

Roles in bug fixing included customer, marketing engineer, engineering manager, 

software engineers and quality assurance. Actors involved in the process are listed at the 

top of the column of activities they perform. (To save space, the flow continues from the 

bottom right of the chart to the top left; the activities on the right follow rather than 

overlap those on the left.)  

Insert Figure 1 about here 

The software maintenance process started when a problem is encountered. When 

a customer called the customer support centre with a problem, the call handler tried to 

solve it using manuals, product descriptions, and the database of known problems. If the 

problem appeared to be a bug that was not already in the database, a new problem report 

was entered. Many problems were found during the development process by the testing 

group, who entered problem reports directly. (Note that the response centre was treated as 

a collective actor. As a result, internal centre activities are omitted from the flowchart of 

the process.)  
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A marketing engineer periodically reviewed new entries in the database. 

Marketing engineers reviewed problem reports for completeness and attempted to 

replicate the problem. The marketing engineer might decide that the problem is really a 

request for an enhancement, which was handled by a separate process. If the bug was 

genuine, the marketing engineer determined the location of the problem and assigned the 

problem report to the software development unit responsible for that module.  

A coordinator in the development unit next assigned the problem report to the 

appropriate software engineer, who investigated the problem. If the problem turned out to 

be entirely in another module, then the engineer passed the request to the engineer 

responsible for the other module. If the problem was internal to a single module, the 

engineer just fixed the module. If the problem required changes to multiple modules, the 

engineer discussed the changes with the owners of the affected modules (as well as other 

interested engineers) and arranged for them to modify their modules appropriately. All 

changes required the approval of management. Changes to interfaces intended for general 

use required as well a design review and approval from a change review board. 

When the engineer was satisfied with the change and it had been approved, he or 

she submitted the new code to the testing and integration group. The integration group 

then recompiled the changed code and relinked the system. The kernel was then tested; 

any bugs found were reported to the appropriate engineers, potentially starting another 

pass through the process. Customers were periodically sent the most recent release of the 

system. In a few cases, they received a patch for a single particularly important or 

relevant change.  

The original Linux bug fixing process. We next consider the original bug fixing 

process for the Linux kernel. The goals of the Linux change management process are not 
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explicitly stated, but can be inferred from the descriptions of the process. During 

development for kernels 2.4 and earlier, the concern seemed to be adding code to 

improve the kernel, while maintaining the quality of the system. Unlike the proprietary 

process, the FLOSS process does not necessarily distinguish between new features and 

bug fixes, nor attempt to control what is added beyond ensuring that the code is of good 

quality (though adding code that might impact the stability of even-numbered kernels, 

such as a significant new feature, is discouraged). Since developers are also users, the 

fact that code has been developed is generally justification enough for at least considering 

its inclusion, though there is no guarantee that a new piece of code will ever be 

incorporated in an official release.  

As with the proprietary process, the original Linux kernel bug fixing process 

started with bug reports posted to a mailing list for kernel developers for a particular 

subsystem. Appendix 1 shows an example emailed bug report for the kernel along with 

follow-up messages and an eventual fix (note that to save space, the source code listings 

that were contained in the messages have been redacted). The kernel developer list gets 

thousands of such messages per month. Based on the report, a developer might have tried 

to characterize the bug or to develop a fix. The decision to work on a fix depended on 

interest and ability of individual. The work done is in turn sent to the kernel mailing list. 

Because multiple developers are working on the system in parallel, it is necessary for a 

new piece of code to be provided in a form that can quickly be integrated with the 

existing source code and any other new code that may have been created in the meantime 

(that is, another goal of the change process is to incorporate changes from multiple 

developers). The most common way to distribute new code is as a “patch”, that is, a set of 
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changes to the current files. Patch tools can integrate multiple patches and identify 

conflicting ones, that is, patches that make overlapping changes to the same lines of code.  

Once a patch is developed and posted to the list, other users can provide feedback, 

e.g., on the coding style, design approach or experiences using the patch. Kernel testing 

depends heavily on peer review (indeed, Glance (2004) goes as far as to claim that no 

testing is done). If users encounter problems with the patch, then they provide feedback 

on the list, thus restarting the bug fixing process. 

Linux’s originator, Linus Torvalds, coordinates the overall maintenance of the 

kernel. If user experiences with a patch were positive, Torvalds might incorporate it into 

his kernel source code tree, often rewriting it in the process. Torvalds’ acceptance of a 

patch was (and still is) the only way into an official Linux release. As Moon and Sproull 

note (2000),  

there is no confusion about who has decision authority in this project. Torvalds 
manages and announces all releases—all 569 of them to date. He acts as a filter 
on all patches and new features—rejecting, accepting, or revising as he chooses. 
He can single-handedly decide to redo something completely if he wishes.  

Torvalds has stated that he is more likely to accept patches from the small number of 

developers he knows and trusts, so patch writers often send their patches to the 

maintainers for a particular module and count on them evaluating and forwarding it to 

Torvalds. Several other developers maintain their own copies of the sources with 

different policies about which patches they accept, and companies (and indeed, end users) 

that use Linux can also maintain their own trees with their own selection of patches 

The current Linux bug fixing process. With the more recent versions of the kernel, 

the bug fixing process has changed to be less centered on Torvalds and to make more use 

of information and communications technologies (ICT) support, specifically, the 
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Bugzilla3 bug tracker and a source code control system (first Bitkeeper and now Git4) 

(Larson, 2004). Again, we can infer some of the goals of the new bug changing process 

by noting the problems the new process is said to fix. Larson (2004) notes that with the 

original process, “where nobody really knew which changes were in, whether they were 

merged properly, or what new things to expect in the upcoming release,” while the new 

processes “ensure that patches aren't forgotten” and gives developers the “ability to 

always be working with the latest copy of the code” and “to update as soon as a feature or 

bug fix they need goes into the kernel” (Larson, 2004). We infer then that the current 

process is intended to keep track of bug reports and patches and to ensure the latter are 

widely available.  

Rather than posting bug reports to the mailing list, in the current process bug 

reports can be posted on a bug tracking system (Larson, 2004). Use of the Bugzilla 

system provides a single source for all bug reports and enables tracking of status of each, 

fixed or not. However, not all developer use the system, as will be discussed below.  

Linux kernel sources, which originally were maintained by Torvalds, are now 

kept in a source code control system, at first BitKeeper (Larson, 2004) and now a new 

system called Git (Shankland, 2005) Both systems allow patches (in particular, patches 

spanning multiple files) to be easily tracked and included or dropped in a release so 

different developers can more easily create patches that can be brought together into a 

final release. Torvalds is quoted as saying that use of the BitKeepeer sped up 

                                                 
3 Bugzilla was originally developed for the Mozilla project, but is now widely used by FLOSS 

developers. 
4  BitKeeper is a proprietary source code control system whose developers provide a free 

license to Linux developers. Torvalds began using BitKeeper in 2002. After a dispute, the 
license was revoked in April 2005, after which Torvalds developed his own system, named 
Git, specialized for Linux kernel sources (Shankland, 2005). 
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development by a factor of 2 (LeClaire, 2005). Because some developers objected to 

using BitKeeper, which is proprietary software, kernel sources can be obtained in a 

variety of other ways and patches may still be posted to the mailing list. Git similarly 

allows easier maintenance of a set of patches, but it is not yet clear how its use will affect 

kernel development.  

Finally, the testing process for the current release is somewhat more systematic 

(Larson, 2004). For example, the Linux Test Project (http://ltp.sourceforge.net/) has 

developed test suites for the kernel. Automated systems exist that allow a developer to 

provide a patch for the kernel and have the tests run automatically using the patched 

code. The system can also pull the current release of the kernel from the source code 

control system and run the regression tests on it. Official releases are still made by 

Torvalds.  

Analysis approach 

In this section, we describe a coordination theory analysis for the processes such 

as the ones described above by identifying the dependencies and coordination 

mechanisms in place. Three heuristics have been developed to identify dependencies and 

coordination mechanisms in different ways (Crowston & Osborn, 2003). First, we can 

examine activities in the current process, identify those that seem to be part of some 

coordination mechanism and then determine what dependencies they manage. Second, 

we can list the activities and resources involved in the process, consider what 

dependencies are possible between them and then determine how these dependencies are 

being managed. Finally, we can look for problems with the process that hint at 

unmanaged coordination problems and identify the underlying dependencies. In this 

section, we will describe each heuristic and give examples of the dependencies and 
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coordination mechanisms identified with this approach. In the following section, we will 

systematically present the integrated results of the analysis.  

Looking for coordination mechanisms 

Taking the first approach, many of the activities in the bug fixing process appear 

to be instances of the coordination mechanisms discussed earlier. Table 2 lists the 

activities performed in the current bug fixing process. The dependency the activity 

manages, if any, is listed in the third column.  

Insert Table 2 about here.  

For example, one of the first things the customer service centre staff and 

marketing engineers in the proprietary firm do upon receiving a problem report is check 

if it duplicates a known problem listed in the change database. In the typology, detect 

common output is listed as a coordination mechanism for managing a dependency 

between two tasks that have duplicate outcomes. The organization can avoid doing the 

same work twice by looking for the common output in a database of known problems and 

reusing the result of one of the tasks (as happened in this example). Linux developers 

similarly mark bugs in Bugzilla as duplicates.  

Task assignment is a coordination mechanism for managing the dependency 

between a task and an actor by finding the appropriate actor to perform the task. Such 

coordination mechanisms are performed repeatedly in this process: customers assign 

tasks to the customer service centre, the customer service centre assigns novel tasks to the 

marketing engineers, marketing engineers assign them to the software engineers and 

software engineers assign tasks to each other.  
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Looking for dependencies 

The second approach to identifying coordination mechanisms is to list the tasks 

and resources involved in the process and then consider what dependencies are possible 

between them. It may be that some of the activities in a process are coordination 

mechanisms for managing those dependencies. As mentioned above, tasks necessary to 

respond to problem reports include noticing there is a problem, finding a workaround, 

reproducing and diagnosing the problem, designing a fix, writing new code and 

recompiling the system with the new code. These activities are shown in bold in Table 2. 

Resources include the problem reports, the efforts of a number of specialized actors and 

the code itself.  

Task-task dependencies. Dependencies between tasks can be identified by looking 

for resources used by more than one task. For example, many tasks create some output, 

such as a bug report, a diagnosis or new code, which is used as input by some other task, 

thus creating a prerequisite dependency between the two. Malone and Crowston (1994) 

note that such dependencies often impose usability and transfer constraints. Some steps in 

the process appear to manage such constraints. For example, testing that a new module 

works correctly addresses the usability constraint between creating code and relinking 

and using the system; releasing the new system addresses the transfer constraint between 

the development organization and the final user of the system.  

If there are two problems in the same module, then both bug fixing tasks need the 

same code, thus creating a shared resource dependency. In the proprietary development 

process, this dependency is managed by assigning modules of code to individual 

programmers and then assigning all problems in these modules to that programmer. This 

arrangement is often called “code ownership,” since each module of the system has a 
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single owner who performs all tasks that modify that module. Such an arrangement 

allows the owner of the code to control all changes made to the code, simplifying the 

coordination of multiple changes.  

Task-resource dependencies. The second category of dependencies is those 

between tasks and resources, which are managed by some kind of task or resource 

assignment. These coordination mechanisms were identified and discussed above, e.g., 

the assignment of bugs to developers by marketing engineers.  

Resource-resource dependencies. Finally, there are dependencies between 

modules owned by different engineers, that is, resource-resource dependencies, that 

constrain what changes can be made. A module depends on another if the first makes use 

of services provided by the second. For example, the process manager code may call 

routines that are part of the file system; therefore, the process management code depends 

on the file system code. Such dependencies must be noticed or identified before they can 

be managed by arranging for coordinated changes. Interactions between different parts of 

a software system are not always obvious, since they are not limited to direct physical 

connections.  

Looking for coordination problems 

A final approach for identifying dependencies is to look for problems in the 

process that suggest unmanaged dependencies. For example, the proprietary developers 

occasionally found at system integration or during testing that a change made to one 

module was incompatible with others, despite the efforts to detect and avoid interactions 

described in the previous section. These problems occur because some dependency 

between the module being changed and other modules were not detected and managed.  
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In the case of Linux, the original process had the problem that patches would get 

dropped due to Torvalds becoming overloaded with submissions. The bug fixing process 

could be quite frustrating for a developer if a patch was not accepted, because it was hard 

to know if the decision was based on the quality of the code or because Torvalds was 

simply too busy to handle the submission. In case it was the later, individuals would often 

repost patches. As Larson notes, “bugs were often missed, forgotten, or ignored unless 

the person reporting the bug was incredibly persistent” (2004). As developer Rob 

Landley succinctly put it, “Linus doesn’t scale” (Barr, 2002).  

To summarize, there are three heuristics that can be used to identify dependencies 

and coordination mechanisms in a process. The first approach is to match activities 

performed against known coordination mechanisms, such as searching for duplicate tasks 

or task assignment. The second approach is to identify possible dependencies between 

activities and resources and then search for activities that do manage these. In the 

example, we identified prerequisite, shared resource and resource-resource dependencies 

that were managed. The final approach is to look for problems that suggest unmanaged or 

incompletely managed dependencies. The coordination mechanisms identified are both 

generic, such as task assignments, and specific, such as code sharing systems.  

Results: Dependencies and coordination mechanisms in software bug fixing 

In this section, we discuss the dependencies and coordination mechanisms found 

in the bug fixing process using the analysis techniques presented above. We will then 

discuss differences between the FLOSS and proprietary processes as well as additional 

alternatives suggested by the analysis. Following the typology of dependencies in Table 

1, we consider task-task, task-resource and resource-resource dependencies in turn. Table 

3 presents a summary of this comparison.  
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Task-task 

Task-task dependencies include shared output, shared resource and flow 

dependencies.  

Duplicate (shared output). The first type of dependency is a common output 

dependency, meaning that two tasks create the same output. Avoiding duplicate tasks is 

difficult if there are numerous workers who could be working on the same task. For 

example, the same bug may be reported by many users; in a software development 

company, managers of the development group would prefer not to waste resources 

diagnosing and solving the same problem repeatedly.  

In the proprietary bug fixing process, this dependency is managed by the 

marketing engineers, who search the databases for each bug report to identify possible 

existing solutions or duplicate reports. In the original Linux process, this dependency was 

managed by allowing users to see all bugs as they were reported or to search the mailing 

list, thus hopefully avoiding duplicates. However, it seems unlikely that average users are 

able to keep up with the volume of messages or to identify matching reports. Instead, the 

burden would fall on the developers to identify when a user report was a duplicate. In the 

current process, users are encouraged to search the Bugzilla database for duplicate 

problem reports before filing a new one. Nevertheless, there is no guarantee that users 

will search or that they will find a duplicate even if it exists, so duplicate bugs are 

reported and have to be identified and marked as such by developers.  

Shared resource. The second type of task-task dependency is a shared resource 

dependency, which arises when multiple processes need the same resources. For 

example, multiple bug fixes may have to be made to the same module of code. As 

mentioned above, one approach to dealing with these dependencies is to have a single 
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person handle all of the changes and the resulting dependencies. This approach does not 

eliminate the dependencies, but does allow a single user to see and thus manage all of 

them. In the original Linux process, Torvalds essentially performed this role, since he 

maintained the kernel source code. In the post-2.4 Linux process, the use of a source code 

control system helps to manage multiple changes to various files by facilitating 

integration of changes made by multiple developers and providing notification of 

conflicts when developers check code back into the system.  

Flow. The third type of task-task dependency is a flow dependency, which arises 

when one task creates a resource that another task requires as an input. While in general a 

flow dependency implies the need for three different kinds of coordination mechanisms 

to manage transfer of the resource, ordering of the tasks and usability, we will focus on 

the third, since usability is the most significant issue in the processes studied. Usability 

means that there must be some mechanism in place to ensure that the output of the first 

task is usable by the second task. At the highest level, the entire bug fixing process might 

be viewed as a mechanism to ensure the usability for the users of the software being 

developed, thus managing a flow dependency from developers to users.  

Within the bug fixing process, several activities ensure that the output of one task 

is usable by another. An interesting usability constraint, common to both cases, is that 

bug reports from the general public are often not detailed enough to be useful for 

developers (Glance, 2004). The low quality of bug reports discourages developers from 

relying on the system, thus further decreasing the quality of the bugs. In response, some 

developers may take on the role of filtering or improving reports. In the proprietary 

process, marketing engineers check that problem reports are detailed enough to be used 

by the engineers fixing the bugs. In the Linux process, developers might post follow up 
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messages to a report (either on the email list or in the Bugzilla database) requesting 

additional information.  

Similarly, bug fixes need to be tested to check that they correctly fix the problem 

and do not introduce new problems, so testing is a way to check that output of bug fixing 

is suitable for use. Testing was done through a rather formal process for the proprietary 

system, and by a combination of individual and peer review for the Linux process.  

In the proprietary process, managers must approve changes before they can be 

implemented. In Linux, module managers and Torvalds play a similar role. Such 

approvals provide a check on the quality of the change, either directly, if the manager 

notices problems, or indirectly, if engineers are more careful with changes they have to 

show their managers. There are other possible interpretations of this approval process: 

managers might use the information to allocate resources among different projects, to 

track how engineers spend their time or even to demonstrate their political power. 

However, if approvals are a quality check, other mechanisms might be appropriate (in 

this and any other process). For example, if approvals are time consuming yet likely, it 

may be more effective to continue the change process without waiting for the approval. 

Most changes will be implemented more quickly; the few that are rejected will require 

additional rework, but the overall cost might be lower. Alternatively, managerial reviews 

could be eliminated altogether in favour of more intensive testing and tracking of test 

results. Interestingly, Linux allows developers to take this approach, since anyone can 

maintain a kernel source tree that includes the patches they want to test or use, approved 

or not. 
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Task-resource 

The next type of dependencies I consider are dependencies between tasks and the 

resources they need. The primary resources in the bug fixing process are the modules of 

code and the time and effort of developers.  

Task assignment. In the analysis, we noted numerous places where actors perform 

part of a task assignment process. For example, customers give problem reports to the 

service centre, which in turn assigns the problems to product engineers, who then assign 

them to software engineers. In addition, software engineers may assign reports or 

subtasks to each other. The typology points out that a key problem in task assignment is 

choosing the actor to whom to assign a task. For the proprietary process, the choice is 

made based on specialization. Specialization allows engineers to develop expertise in a 

few modules, which is particularly important when the engineers are also developing new 

versions of the system. Furthermore, since modules are assigned to engineers, the code 

sharing problem discussed above is minimized. However, there are also disadvantages. 

First, diagnosing the location of a problem can be difficult, because symptoms can appear 

to be in one module as a result of problems somewhere else. In the best case, an error 

message will clearly identify the problem; otherwise, the problem will be assigned to the 

most likely area and perhaps transferred later. In any event, making the assignment 

correctly requires a fair amount of work and experience for the assigner, as is evidenced 

by the multiple layers involved in making the assignment. A second problem is load 

balancing: one engineer might have many problems to work on, while others have none.  

An alternative basis for choosing engineers was found in a new support group that 

was set up in the proprietary company during our study. Support engineers were not 

specialized by module, but were instead organized around change ownership, that is, an 
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engineer assigned a particular problem report makes changes to any affected modules. As 

a result, task assignment can be done based on workload rather than specialization. In this 

case, a manager can make the assignment by tracking the status of individual engineers, 

or engineers can assign work to themselves whenever they finish a task. Many processes 

could be similarly redesigned to use generalists rather than specialists. For example, in a 

customer service process, the person who answers the phone could be enabled to resolve 

any problem rather than having to refer the problem to a specialist.  

With change ownership, multiple engineers may have to work on the same 

module, thus creating a new shared resource dependency. This problem illustrates an 

important point: coordination mechanisms are themselves activities, and using a different 

kind of coordination mechanism to manage one dependency may create new 

dependencies that must in turn be managed. In this case, to manage these new task 

dependencies, the company implemented a source control system to maintain a copy of 

all source files. When engineers want to modify a file, they check it out of the system, 

preventing other programmers from modifying it (by contrast, the Linux source code 

control system does not lock files, thus permitting parallel development). When the 

modification is completed, the module is checked back in and the system records the 

changes made. The activities and analysis of this process are shown in Table 4.  

Interestingly, the Linux process does not rely on explicit assignment but instead 

relies on developers to assign themselves to tasks. With the BugZilla system, depending 

on the module with the bug, bugs start off assigned to the default maintainer, however, 

default maintainers may not be the ones who actually fix the bug. This approach makes 

the assignment process more similar to the market approach suggested by Crowston 

(1997). In a market form of task assignment, a description of each task is sent to all 
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available agents. Each evaluates the task and, if interested in working on it, submits a bid, 

saying how long it would take, how much it would cost or even what they would charge 

to do it. The task is then assigned to the best bidder, thus using information supplied by 

the agents themselves as the basis for picking who should work on the task. However, the 

Linux process differs in that there is often no explicit assignment of the task; rather, each 

developer chooses autonomously whether to work on a bug.  

The self-selection process results in two significant differences from the 

commercial process. First, there is a very uneven distribution of tasks per developer, as 

shown in the plot of the number of change sets contributed to BitKeeper vs. the number 

of developers in Figure 2. This figure shows that a few developers contribute many 

patches, while most developers contribute only a few, something that would likely be 

undesirable in most companies. A second problem is that multiple developers may 

choose to work on the same code modules at the same time. Rather than preventing such 

conflicting uses, the source code control system used for Linux identifies and often 

resolves any problems created by the parallel uses as they are found (a process sometimes 

called “optimistic concurrency control”).  

Insert Figure 2 about here 

The use of a market-like task assignment mechanism in the Linux process is 

consistent with predictions of the effect of the more extensive use of ICT. ICT makes it 

easier to gather information about available tasks and resources and to distribute the 

decision about which resources to use for a particular task. At a macro level, Malone, 

Yates and Benjamin (1987) suggest that decreased coordination costs favour more 

extensive use of markets, which usually have lower costs but require more coordination 

activities, over vertical integration, which makes the opposite trade-off.  
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Resource-resource 

The final type of dependency in the typology is resource-resource dependencies. 

In the bug fixing process, these arise because modules of code may be interrelated, 

meaning that a change in one module can require changes in another. In principle, it 

should be easy to detect dependencies automatically by examining the code, as was done 

by Schach et al. (2003). In the proprietary software development company, however, 

there seemed to be no reliable mechanical means to determine the interactions between 

different modules. Instead, dependencies are tracked by manually tracking documents. 

The set of routines and data provided by a module make up what is called the interface to 

that module. Different interfaces are provided for different classes of users. Customer 

interfaces are described in published manuals and are therefore rarely changed. Service 

interfaces are provided for use by developers of other parts of the system software and 

are described in formal documents, called external specifications, which are circulated 

within the company but usually not to customers. Interfaces intended for use only within 

a single development group are described in an informally circulated internal 

specification, if they are documented at all.  

Copies of manuals and external specifications are kept in a documentation library; 

internal specifications are maintained only by their developer. Programmers who request 

a document from the document library are tracked so they can be informed of any 

changes to the document. At the time of my study, there were 800-900 documents in the 

library, and about 1000 document requestors being tracked. A total of 15,000 copies of 

documents had been distributed.  

In practice, however, programmers sometimes borrow a document or copy pieces 

of someone else’s code and therefore do not realize that they should inform the developer 
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that they are using the interface. Since the documentation subscriber lists are not reliable, 

the software engineer planning a change identifies the other affected engineers based 

mostly on their knowledge of the system’s interactions and what other developers are 

doing.  

Some coordination problems can be traced to the reliance on a heuristic 

mechanism to locate dependencies. In particular, because there is less informal 

communication between divisions, the mechanism does not work very well for 

dependencies between modules are developed in different divisions. For example, in the 

organization studied, a word processing program once became the source of mysterious 

system crashes. It turned out that the word processor’s developers had used a very low-

level system call that had been changed between releases of the operating system. 

However, because the word processor was developed in another unit from the operating 

system, the programmers of the two modules did not communicate. Thus, the developers 

of the word processor did not know they should avoid the system call nor did the 

developer of the system call know the word processor developers were using it. In other 

words, the usual social mechanism for managing the dependencies between modules 

failed, leading to the problems.  

In the Linux environment, it is not clear how dependencies between modules are 

handled. A key goal of most FLOSS development efforts is to reduce the number of inter-

module linkages since they make it harder for developers to understand and work with 

the code (Reis & Fortes, 2002). Still, there are reports that degree of linkage in the Linux 

kernel are increasing, raising concerns about maintainability (Schach et al., 2003). 

Understanding the nature of dependencies between modules and their management 

should be a fruitful area for future research on FLOSS development.  
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For sharing information resources, communications and database technologies 

may automate the necessary coordination mechanisms. For example, coordination is 

necessary if multiple tasks use common information stored on paper (a shared resource 

dependency). It may therefore be desirable to have a single individual handle all the data, 

to simplify the coordination. For example, a paper-based conference room schedule is 

usually kept in one central location because of the possibility of conflicting reservations 

and the prohibitive cost of updating copies every time a reservation is made. Data such as 

customer accounts or credit information are often handled similarly, resulting in 

specialization of actors based on their access to information. Database and 

communications systems enable multiple workers to access and make changes to data. By 

empowering workers and reducing the need for specialization, ICT can change the basis 

for assigning tasks. For example, if all workers are equally capable of performing a task, 

then tasks can be assigned on criteria such as workload or the customer involved, rather 

than on availability of data or specialization. Such a change was made to the Citibank 

letter of credit process when a group of specialists, each performing a single step of the 

process, were replaced by generalists who handle the entire process for particular 

customers (Matteis, 1979).  

Conclusion 

To conclude this paper, I consider the implications for a coordination theory 

approach for process transformation, discuss limitations of the approach and present ideas 

for future research.  



Draft of 9/7/05  35 

Implications of Coordination Analysis for Process Transformation 

Engineering change provides a microcosm of coordination problems and 

mechanisms to solve them. Successful implementation of a change requires management 

of numerous dependencies among tasks and resources. A variety of mechanisms are used 

to manage these dependencies. For example, the possibility of duplicate tasks may be 

ignored or may be investigated before engineers attempt to solve the problem. 

Dependencies between tasks and the resources needed to perform them are managed by a 

variety of task assignment mechanisms, such as managerial decision-making based on 

expertise or workload; those between modules of the system, by technological 

coordination mechanisms, such as source control systems. The choice of coordination 

mechanisms to manage these dependencies results in a variety of possible business 

processes, some already known (such as change ownership) and some novel (such as 

voluntaristic selection of work by developers). The relative desirability of mechanisms is 

likely to be affected by the use of ICT. For example, the use of a computer system such 

as Bugzilla makes it easier to find existing solutions to a problem. Such a system could 

reduce both duplicate effort and coordination costs.  

The software change process has interesting parallels in other industries. Despite 

differences in the products, other engineering change processes studied by this author 

(Crowston, 1991b) had similar goals, activities, coordination problems and mechanisms. 

Further afield, there are parallels between diagnosing software bugs to assign them to 

engineers and diagnosing patients to assign them to medical specialists. An analysis 

similar to the one presented here might reveal interesting alternatives in the medical 

diagnosis domain as well.  
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Limitations of coordination theory analysis 

Of course, our analysis has several limitations. Coordination theory, like all 

theories, is a simplification of the complexity of real processes in order to highlight 

possibilities for transformation. The single example presented here demonstrates the 

potential of this approach. A coordination theory analysis can identify important 

dependencies or coordination problems that must be addressed in some way for a process 

to be successful. However, the suggestions of the analysis need to be tempered by 

consideration of omitted factors. The technique focuses on how tasks are performed, 

rather than how employees are motivated to perform, come to understand their jobs or 

develop shared cultures. For example, a lower mechanism cost does not mean that that 

mechanism is always better or should be implemented. As mentioned above, market-like 

task assignment mechanisms may have certain cost benefits, but are also susceptible to 

agency problems that must be addressed if they are to succeed. Rather than dictating what 

must be done, the analysis suggests possibilities for transformation that an informed 

manager can consider and modify to fit the particulars of the organization.  

Said alternately, coordination theory does not make strong predictions about what 

should happen to any single organization that implements a new communication system, 

although it does suggest what will happen in aggregate (Malone et al., 1987). Rather than 

the specific accuracy of its predictions, therefore, an appropriate test for the theory is its 

utility for organization designers. Coordination theory is a success if those attempting to 

understand or redesign a process find it useful to consider how various dependencies are 

managed and the implications of alternative mechanisms. As an example, we have used 

these techniques to compile a handbook of business processes at a variety of levels and in 

different domains (Malone et al., 2003; Malone et al., 1999). Coordination theory makes 
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the handbook feasible by providing a framework for describing more precisely how 

processes are similar and where they differ. Managers or consultants interested in 

redesigning a process can consult the handbook to identify likely alternatives and to 

investigate the advantages or disadvantages of each. A further advantage of this approach 

is its ability to suggest new processes by navigating through the dual hierarchies, 

abstraction and composition. As well, the work reviewed above on modelling techniques 

shows that coordination can be incorporated into many modelling techniques.  

Future Research 

A process transformation agenda suggests several additional projects for future 

research. First, development of the process handbook and general use of a coordination-

theory analysis require more rigorous methods for recording processes and identifying 

dependencies in organizations. There are already many techniques for data collection that 

are relevant, but none focus explicitly on identifying dependencies. Researchers affiliated 

with the handbook project have proposed an approach that relies on basic techniques of 

ethnographic interviewing and observation to collect data and activity lists to identify 

dependencies and coordination mechanisms (Crowston & Osborn, 2003).  

A second question is how to classify different coordination processes. The initial 

approach to this problem was to list coordination processes by the dependency they 

addresses. Goethals et al. (2005) extend the analysis given here, while Malone et al. 

(1999) take this approach further by proposing a hierarchy of coordination processes 

from general to specific. Other authors have proposed different organizations. For 

example, Etcheverry, Lopisteguy and Dagorret (2001a, 2001b) propose a catalogue of 

coordination patterns. A pattern is defined as “a solution to a problem in a given context”, 

so the catalog is organized by coordination contexts. More work could be done to bring 
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together and organize the mechanisms that have been studied.  

A third question is about the generality of coordination mechanisms. Most of the 

work applying the typology of coordination mechanisms has assumed rather than tested 

the generality of the mechanisms. Nevertheless, the list of mechanisms does seem to have 

been useful in a variety of settings.  

A final question is how to analyze specific coordination practices, e.g., resource 

allocation. Malone and Crowston (1994) asked, “Can we characterize an entire ‘design 

space’ for solutions to this problem and analyze the major factors that would favor one 

solution over another in specific situations?” Most applications of coordination theory are 

not very explicit about evaluation or factors that make particular coordination 

mechanisms more or less desirable. There has been some work addressing specific 

metrics for coordination. For example, Frozza & Alvares (2002) offer a list of criteria for 

comparing mechanisms: predictivity, adaptability, action control, communication mode, 

conflicts, information exchange, agents, applications, advantages and disadvantages. 

Albino, Pontrandolfo and Scozzi (2002) develop the notion of coordination load, “a 

quantitative index that measures the effort required to properly coordinate a given 

process”, based on an analysis of the workflow in the process. The goal of this index is to 

allow a comparison of alternative coordination modes. Nevertheless, it is clear that we 

are far from characterizing the design space for any of the identified dependencies or 

coordination mechanisms.  

Even in its current stage of development though, coordination theory seems to 

provide a much needed underpinning for the study and design of new business processes. 

The result of these efforts will be a coordination-theory based set of tools for analysts and 

designers, thus enabling business process transformation.  



Draft of 9/7/05   39 

References 

Abbott, A. (1992). From causes to events: Notes on narrative positivism. Sociological 
Methods and Research, 20(4), 428–455. 

Abell, P. (1987). The syntax of social life: The theory and method of comparative 
narratives. New York: Clarendon Press. 

Albino, V., Pontrandolfo, P., & Scozzi, B. (2002). Analysis of information flows to 
enhance the coordination of production processes. International Journal of 
Production Economics, 75, 7–9. 

Alho, K., & Sulonen, R. (1998). Supporting virtual software projects on the Web. Paper 
presented at the Workshop on Coordinating Distributed Software Development 
Projects, 7th International Workshop on Enabling Technologies: Infrastructure for 
Collaborative Enterprises (WETICE ’98). 

Barr, J. (2002, 11 February). Linus tries to make himself scale. LinuxWorld.com   
Retrieved 20 March, 2005, from http://www.linuxworld.com/story/32722.htm  

Britton, L. C., Wright, M., & Ball, D. F. (2000). The use of co-ordination theory to 
improve service quality in executive search. Service Industries Journal, 20(4), 
85–102. 

Crowston, K. (1991a). Modelling coordination in organizations. In M. Masuch & G. 
Massimo (Eds.), Artificial intelligence in organization and management theory. 
Amsterdam: Elsevier. 

Crowston, K. (1991b). Towards a coordination cookbook: Recipes for multi-agent action. 
Unpublished doctoral dissertation, MIT Sloan School of Management. 

Crowston, K. (1997). A coordination theory approach to organizational process design. 
Organization Science, 8(2), 157–175. 

Crowston, K. (2003). A taxonomy of organizational dependencies and coordination 
mechanisms. In T. W. Malone, K. Crowston & G. Herman (Eds.), The process 
handbook (pp. 85–108). Cambridge, MA: MIT Press. 

Crowston, K., & Kammerer, E. (1998). Coordination and collective mind in software 
requirements development. IBM Systems Journal, 37(2), 227–245. 

Crowston, K., & Osborn, C. S. (2003). A coordination theory approach to process 
description and redesign. In T. W. Malone, K. Crowston & G. Herman (Eds.), 
Organizing business knowledge:  The MIT process handbook. Cambridge, MA: 
MIT Press. 

Dennett, D. C. (1987). The intentional stance. Cambridge, MA: MIT Press. 



Draft of 9/7/05   40 

Etcheverry, P., Lopisteguy, P., & Dagorret, P. (2001a). Pattern-based guidelines for 
coordination engineering. In Database and expert systems applications (Vol. 
2113, pp. 155-164). 

Etcheverry, P., Lopisteguy, P., & Dagorret, P. (2001b). Specifying contexts for 
coordination patterns. In Proceedings of modeling and using context (Vol. 2116, 
pp. 437-440). 

Frozza, R., & Alvares, L. O. (2002). Criteria for the analysis of coordination in multi-
agent applications. In Coordination models and languages, proceedings (Vol. 
2315, pp. 158-165). 

Galbraith, J. R. (1977). Organization design. Reading, MA: Addison-Wesley. 

Glance, D. G. (2004). Release criteria for the Linux kernel. First Monday, 9(4). 

Goethals, F., De Backer, M., Lemahieu, W., Snoeck, M., & Vandenbulcke, J. (2005, 22 
June). Identifying dependencies in business processes. Paper presented at the 
Communication and Coordination in Business Processes (LAP-CCBP) Workshop, 
Kiruna, Sweden. 

Herbsleb, J. D., & Grinter, R. E. (1999). Splitting the organization and integrating the 
code: Conway’s law revisited. In Proceedings of the international conference on 
software engineering (ICSE ‘99) (pp. 85–95). Los Angeles, CA: ACM. 

Kidder, L. H. (1981). Research methods in social relations (4th ed.). New York: Holt, 
Rinehart and Winston. 

Larson, P. (2004). Kernel comparison: Improvements in kernel development from 2.4 to 
2.6.   Retrieved 19 March, 2005, from http://www-106.ibm.com 
/developerworks/Linux/library/l-dev26/  

Lawler, E. E., III. (1989). Substitutes for hierarchy. Organizational Dynamics, 163(3), 
39–45. 

LeClaire, J. (2005, 22 April). Torvalds adopts new programming management system. 
www.LinuxInsider.com   Retrieved 25 July, 2005, from 
http://www.macnewsworld.com/story/42548.html  

Malone, T. W., & Crowston, K. (1994). The interdisciplinary study of coordination. 
Computing Surveys, 26(1), 87–119. 

Malone, T. W., Crowston, K., & Herman, G. (Eds.). (2003). Organizing business 
knowledge:  The MIT process handbook. Cambridge, MA: MIT Press. 

Malone, T. W., Crowston, K., Lee, J., Pentland, B., Dellarocas, C., Wyner, G., et al. 
(1999). Tools for inventing organizations: Toward a handbook of organizational 
processes. Management Science, 43(3), 425–443. 



Draft of 9/7/05   41 

Malone, T. W., Yates, J., & Benjamin, R. I. (1987). Electronic markets and electronic 
hierarchies. Communications of the ACM, 30, 484–497. 

March, J. G., & Simon, H. A. (1958). Organizations. New York: John Wiley and Sons. 

Matteis, R. J. (1979). The new back office focuses on customer service. Harvard 
Business Review, 57, 146–159. 

McKelvey, B., & Aldrich, H. (1983). Populations, natural selection and applied 
organization science. Administrative Science Quarterly, 28, 101–128. 

Mohr, L. B. (1982). Explaining organizational behavior: The limits and possibilities of 
theory and research. San Francisco: Jossey-Bass. 

Moon, J. Y., & Sproull, L. (2000). Essence of distributed work: The case of Linux kernel. 
First Monday, 5(11). 

Powell, W. W. (1990). Neither market nor hierarchy: Network forms of organization. 
Research in Organizational Behavior, 12, 295–336. 

Raymond, E. S. (1998). The cathedral and the bazaar. First Monday, 3(3). 

Reis, C. R., & Fortes, R. P. d. M. (2002). An overview of the software engineering 
process and tools in the Mozilla project.   Retrieved 1 March, 2005, from 
http://opensource.MIT.edu/papers/reismozilla.pdf  

Schach, S. R., Jin, B., Wright, D. R., Heller, G. Z., & Offutt, A. J. (2003). Maintainability 
of the Linux kernel.   Retrieved 14 Dec, 2003, from 
http://www.vuse.vanderbilt.edu/%7Esrs/preprints/Linux.longitudinal.preprint.pdf  

Shankland, S. (2005, 20 April). Torvalds unveils new Linux control system. CNET 
News.com   Retrieved 25 July, 2005, from http://news.zdnet.com/2100-3513_22-
5678651.html  

Tushman, M., & Nadler, D. (1978). Information processing as an integrating concept in 
organization design. Academy of Management Review, 3, 613–624. 

Wayner, P. (2000). Free for all. New York: HarperCollins. 

Wheeler, D. A. (2005). Linux kernel 2.6: It's worth more!   Retrieved 18 March, 2005, 
from http://www.dwheeler.com/essays/Linux-kernel-cost.html  

 

 



Draft of 9/7/05   42 

Figures and Tables 

Table 1. A typology of dependencies and associated coordination mechanisms  
from (Crowston, 2003). 

Task uses resource 
1. determine needs  
2. identify resources 

• ads 
• prepared list 
• only one resource 

3. collect information on resources 
• by bidding  
• manager knows 

4. pick best 
5. do assignment 

• mark resource in use 
6. manage flow dependencies from acquiring resource to using resource 

Task requires multiple resources simultaneously 
1. pre-assign resources to simplify coordination problem 
2. manage dependency on the fly 

• avoid or detect and resolve deadlock 
• detect and resolve starvation 

Sharing: Multiple tasks use the same resource 
• ensure same version of sharable resources 

• destroy obsolete versions 
• copy master prior to use 
• check versions prior to use 
• detect and fix problems after the fact 

• schedule use of non-shareable but reusable resources 
1. check for conflict before using and then mark the resource as in-use 
2. manage flow of resource from one task to another 

• allocate non-reusable resources 
• divide the resource among the tasks 
• abandon one task 
• get more resources 

Flow: One task uses a resource created by another  
1. usability (i.e., the right thing) 

• user adapts to resource as created 
• creator gets information from user to tailor resource 
• 3rd party sets standard, followed by both producer and consumer 

2. prerequisite (i.e., at the right time) 
• producer produces first 

• follow plan 
• monitor usage 
• wait to be asked 
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• standard reorder points 
• when out 
• just-in-time 

• consumer waits until produced 
• monitor 
• be notified 

3. accessibility (i.e., in the right place) 
• physical goods 

• truck 
• information  

• on paper 
• verbally 
• by computer 

Common output: Multiple tasks create the same output 
1. Detect common output 

• database of known problems 
2. Manage common outputs 

• effects overlap or are the same 
• eliminate one task (manage shared resource) 
• merge tasks take advantage of synergy 

• effects are incompatible 
• abandon one 
• don’t try to achieve them at the same time 

Composition of tasks 
• choose tasks to achieve a given goal (a planning problem) 

Composition of resources 
• trace dependencies of between resources to determine if a coordination problem 

exists 

Note: Dependencies are shown in bold. Numbered items are components of the 
coordination mechanism for managing the given dependency. Bulletted items are 
alternative mechanisms or components of the mechanism for the given 
dependency.  
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Figure 1. Flowchart of proprietary software bug fixing process (from Crowston, 1997). 
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NB: the flow continues from the bottom right of the chart to the top left; the activities on the right 
follow rather than overlap those on the left. 
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Table 2. Activities and coordination mechanisms in the proprietary bug fixing process (from 
Crowston, 1997). 

Actor Activity Dependency managed between… 

Customer find a problem while using system  
 report problem to response centre problem fixing task and capable 

actor 
Response Centre look for bug in database of known bugs; if found, return fix to 

customer and stop 
problem fixing task and duplicate 
tasks 

 attempt to resolve problem  
 refer hardware problems to field engineers problem fixing task and capable 

actor 
 if problem is novel, determine affected product and forward bug 

report to marketing engineer 
problem fixing task and capable 
actor 

Marketing 
Engineer 

look for bug in database of known bugs; if found, return fix to 
customer 

problem fixing task and duplicate 
tasks 

 request additional information if necessary usability of problem report by 
next activity 

 attempt to reproduce problem usability of problem report by 
next activity 

 attempt to find workaround  
 set priority for problem problem fixing task and actor’s 

time 
 if the report is actually a request for an enhancement , then treat it 

differently 
 

 determine affected module 
if unable to diagnose, forward to SWAT Team 
if bug is in another product, forward to appropriate product 
manager 
forward bug report to manager of group responsible for module 

task and resources required by 
tasks 
problem fixing task and capable 
actor 

Programming 
Manager or 
Designate 

determine engineer responsible for module and forward bug 
report to that engineer 

problem fixing task and capable 
actor 

Software Engineer pick the report with the highest priority, or the oldest, or the one 
you want to work on next 

problem fixing task and actor’s 
time 

 diagnose the problem  
 if the problem is in another module, forward it to the engineer for 

that module 
problem fixing task and capable 
actor 

 design a fix for the bug  
 check if change is needed in other releases and make the change 

as needed 
problem fixing task and capable 
actor  

 send the proposed fix to affected engineers for their comments; if 
the comments are negative, then revise the bug and repeat the 
process 

two modules  

 if the change requires changes to a controlled document, then 
send the proposed change to the various managers and the change 
review board for their approval 

management of usability task and 
capable actor 

Managers approve the change usability of fix by next activity  
Software engineer write the code for the fix  
 determine what changes are needed to other modules task and subtasks needed to 

accomplish it 
 if necessary, ask the engineers responsible for the other modules 

to make any necessary changes 
problem fixing task and capable 
actor 

 test the proposed fix usability of fix by next activity  
 send the changed modules to the integration manager task and capable actor 
 release the patch to be sent to the customer transfer to customer 
Integration check that the change has been approved usability of fix by integration 

activity 
 recompile the module and link it with the rest of the system  
 test the entire system usability of entire system by next 

activity 
 release the new software transport to customers 

Activities in bold are those logically necessary to respond to problem reports.  
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Table 3. Activities in the generalist form of task assignment (from Crowston, 1997).  

Agent Activity Dependency managed 
between… 

Customer Use system, find a bug  
 report bug to response centre problem fixing task and capable 

actor 
Response 
Centre 

lookup bug in database of known bugs; if 
found, return fix to customer and stop 

problem fixing task and 
duplicate tasks 

 determine affected product and forward bug 
report to marketing engineer 

problem fixing task and capable 
actor 

Marketing 
Engineer 

lookup bug in database of known bugs; if 
found, return fix to customer and stop 

problem fixing task and 
duplicate tasks 

 attempt to reproduce the bug—part of 
diagnosing it 

 

 determine affected module; if can’t diagnose, 
forward to SWAT Team; if other product, 
forward to appropriate product manager; put 
bug report in the queue of bugs to work on 

problem fixing task and capable 
actor 

Software 
Engineer 

start work on the next bug in the queue problem fixing task and actor’s 
time 

 diagnose the bug  
 if it’s actually an enhancement request, then 

treat it differently 
 

 design a fix for the bug  
 if the change requires changes to a controlled 

document, then send the proposed change to 
the various managers and the change review 
board for their approval 

management of usability task 
and capable actor 

Managers approve the change  usability of fix by subsequent 
activities  

Software 
engineer 

check out the necessary modules; if someone 
else is working on them, then wait or 
negotiate to work concurrently 

problem fixing task and other 
tasks using the same module 

 write the code for the fix  
 test the proposed fix usability of fix by subsequent 

activities  
 send the changed modules to the integration 

manager; check in the module 
 

Integration check that the change has been approved usability of fix by subsequent 
activities  

 recompile the module and link it with the rest 
of the system 

integration 

 test the entire system usability of entire system by 
next activity 

 release the new software  
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Figure 2. BitKeeper contributions vs number of developers.  

 
Changes per developer follow a power law distribution: A small number of developers contribute 
many changes, while many developers contribute only a few changes. Black lines are fitted 
power law trend lines.  
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Appendix. Example of email bug report and patch in the Linux kernel  
(from http://lkml.org/lkml/2003/5/28/204).  

 
Subject 2.4 bug: fifo-write causes diskwrites to read-only fs ! 
From R  
Date Wed May 28 2003 - 13:02:20 EST 
 
Hi all, 
 
It turns out that Linux is updating inode timestamps of fifos (named pipes) 
that are written to while residing on a read-only filesystem. It is not only 
updating in-ram info, but it will issue *physical* writes to the read-only fs 
on the disk ! 
 
I use a CompactFlash in an embedded application with a read-only root-fs on 
it. There are several processes that communicate with each other via fifos. 
This bug in Linux causes frequent writes to my CF and will shorten it's 
lifetime enormously .. 
 
I've posted a report on the "mysterious writes" before: 
(http://www.ussg.iu.edu/hypermail/Linux/kernel/0303.2/1753.html) 
(incorrectly) linking it to a possible bug in O_SYNC. Nothing came out of it. 
 
But now I've completely tracked down the bug (logging all diskaccesses and 
seeing it undoubtly write in disksectors containing time-stamp info of 
fifo's). Looking back it would have been easier to prove that something is 
wrong: the modified time-stamps survive power-cycles. This is not supposed to 
happen on a read-only fs. 
 
I've tried reading the kernel source to find where the bug lives, But I'm not 
too familiar with it. Anyone out there who can pin it down ? 
 
greetings, R  
 
Sysinfo: 
-------- 
- various 2.4 kernels including RH-2.4.20-13.9, but also straight 2.4(ac) 
ones. 
- CompactFlash (= IDE disk) 
- Geode GX1 CPU (i586 compatible) 

 
Date Wed, 28 May 2003 15:17:38 -0400 (EDT) 
From D 
Subject Re: 2.4 bug: fifo-write causes diskwrites to read-only fs ! 
 
How does it 'know' it's a R/O file-system? Have you mounted it R/O, mounted 
it noatime, or just taken whatever you get when you boot from a ramdisk? 
 
FYI, I created a FIFO with mkfifo, remounted the file-system R/O, executed 
`cat` with it's input coming from the FIFO, and then waited for a few 
minutes. I then wrote to the FIFO. The atime did not change with 2.4.20. 
 
Cheers, D 
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Subject Re: 2.4 bug: fifo-write causes diskwrites to read-only fs ! 
Date Wed, 28 May 2003 21:34:17 +0200 
From R 
 
Hi D, 
 
The kernel has the "ro" commandline-parameter. There is no remount after the 
system boots. "touch /bla" gives a read-only fs error. 
 
> FYI, I created a FIFO with mkfifo, remounted the file-system 
> R/O, executed `cat` with it's input coming from the FIFO, and 
> then waited for a few minutes. I then wrote to the FIFO. 
> The atime did not change with 2.4.20. 
 
Just did the same here (on my workstation). And the times *did* change .. 
More precisely: the "modification" & "change" were updated, the "access" time 
remained unchanged. 
 
RH9, kernel-2.4.20-13.9 
 
greetings, R 

 
Date Wed, 28 May 2003 16:22:47 -0400 (EDT) 
From D 
Subject Re: 2.4 bug: fifo-write causes diskwrites to read-only fs ! 
 
Okay. I can now verify the problem. There are two problems as this script 
will show: 
 
Script started on Wed May 28 16:10:13 2003 
# cat xxx.c 
#include <stdio.h> 
… test program listing omitted … 
# gcc -O2 -o xxx -Wall xxx.c 
# ./xxx 
atime = 3ed51750 
mtime = 3ed517c5 
ctime = 3ed517c5 
…test program output omitted … 
 
# >/alt/foo 
bash: /alt/foo: Read-only file system 
# exit 
exit 
Script done on Wed May 28 16:11:12 2003 
 
As you can clearly see, access time (atime) is not changed. However, both 
ctime and mtime are both changed with every FIFO access. Since this FIFO is 
provably on a R/O file system, nothing should change. 
 
Now, somebody will probably claim that this is the correct POSIX defined 
behavior <sigh> so you might have to make some work-around like use a pipe or 
socket instead of the FIFO?? 



Draft of 9/7/05   48 

 
Cheers, D 

 
Subject Re: 2.4 bug: fifo-write causes diskwrites to read-only fs ! 
Date Wed, 28 May 2003 22:52:30 +0200 
From R  
 
Hi D, 
 
Yeah !, I'm no longer alone .. :-) 
 
Note that the fact that you see the times changing in the fs while it is 
mounted doesn't imply a problem in itself: serial and tty device nodes get 
their time-stamps updated too on a read-only fs when they are written.  But 
these changes are in ram only: when you reboot you get the old values back. 
 
But with FIFOs the changes *do* get written out to the read-only fs ! 
 
Hmm, wonder what happens if you try it on a real read-only medium like a CDR.  
Maybe kernel errors/panic .. 
 
> Now, somebody will probably claim that this is the correct 
> POSIX defined behavior <sigh> so you might have to make some 
> work-around like use a pipe or socket instead of the FIFO?? 
 
Seems very stupid to me if POSIX specifies this. I don't have the POSIX spec, 
but maybe it specifies what "read-only" is supposed to mean somewhere too .. 
 
But let's wait & see .. :-) 
 
greetings, R 

 
Subject  Re: 2.4 bug: fifo-write causes diskwrites to read-only fs ! 
From  S  
Date  Fri May 30 2003 - 08:27:17 EST 
 
Hi, 
 
On Wed, May 28, 2003 at 10:52:30PM +0200, R wrote: 
 
> I don't have the POSIX spec, but maybe it specifies what "read-only" 
> is supposed to mean somewhere too .. 
 
SingleUnix says: 
 
http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap04.html#tag_04
_07 
 
"Marks for update, and updates themselves, are not done for files on read-
only file systems" 
 
So we're wrong here. Patch below fixes it for me for 2.4. 
 
Cheers, S 
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--- Linux-2.4-odirect/fs/inode.c.=K0004=.orig 
+++ Linux-2.4-odirect/fs/inode.c 
@@ -1194,6 +1194,24 @@ void update_atime (struct inode *inode) 
mark_inode_dirty_sync (inode); 
} /* End Function update_atime */ 
 
+/** 
+ * update_mctime - update the mtime and ctime 
+ * @inode: inode accessed 
+ * 
+ * Update the modified and changed times on an inode for writes to special 
+ * files such as fifos. No change is forced if the timestamps are already 
+ * up-to-date or if the filesystem is readonly. 
+ */ 
+ 
+void update_mctime (struct inode *inode) 
+{ 
+ if (inode->i_mtime == CURRENT_TIME && inode->i_ctime == CURRENT_TIME) 
+ return; 
+ if ( IS_RDONLY (inode) ) return; 
+ inode->i_ctime = inode->i_mtime = CURRENT_TIME; 
+ mark_inode_dirty (inode); 
+} /* End Function update_mctime */ 
+ 
 
/* 
* Quota functions that want to walk the inode lists.. 
--- Linux-2.4-odirect/fs/pipe.c.=K0004=.orig 
+++ Linux-2.4-odirect/fs/pipe.c 
@@ -230,8 +230,7 @@ pipe_write(struct file *filp, const char 
/* Signal readers asynchronously that there is more data. */ 
wake_up_interruptible(PIPE_WAIT(*inode)); 
 
- inode->i_ctime = inode->i_mtime = CURRENT_TIME; 
- mark_inode_dirty(inode); 
+ update_mctime(inode); 
 
out: 
up(PIPE_SEM(*inode)); 
--- Linux-2.4-odirect/include/Linux/fs.h.=K0004=.orig 
+++ Linux-2.4-odirect/include/Linux/fs.h 
@@ -201,6 +201,7 @@ extern int leases_enable, dir_notify_ena 
#include <asm/byteorder.h> 
 
extern void update_atime (struct inode *); 
+extern void update_mctime (struct inode *); 
#define UPDATE_ATIME(inode) update_atime (inode) 
 
extern void buffer_init(unsigned long); 
  
 


