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We explore the bi-directional relationship between human and machine learning in citizen science. Theoretically, the study draws on the
Zone of Proximal Development concept, which allows us to describe the augmentation of human learning by AI, human augmentation
of machine learning and how tasks can be designed to facilitate co-augmentation. Methodologically, the study utilizes a design-science
approach to explore the design, deployment, and evaluations of the Gravity Spy citizen science project. The findings highlight the
challenges and opportunities of co-augmentation, where both humans and machines contribute to each other’s learning and capabilities.
The research contributes to the existing literature by emphasizing the role of ZPD in citizen science projects, showcasing how the
concept supports ongoing learning for volunteers and keeps machine learning aligned with evolving data.
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1 INTRODUCTION

The growing capability of artificial intelligence (AI) technologies has sparked considerable interest in rethinking
interactions between humans andmachines. The traditional narrative has emphasized a unidirectional flow of knowledge,
machines enhancing human capabilities through automation and decision support or humans providing labeled data
to train machines. Few systems envision a bi-directional relationship where machines not only augment and extend
human capabilities, but humans simultaneously work to augment and extend the capabilities of machines. Such a
symbiotic relationship requires that both humans and machines are engaged in a continuous learning process.

The possibility for a mutually beneficial system is particularly compelling for citizen science (CS), that is, scientific
projects that involve members of the general public as contributors. An increasing number of CS projects deploy AI
technologies [5], e.g., iNaturalist, eBird, Snapshot Safari and the Koster Seafloor Observatory in biology; Muon Hunters,
Galaxy Zoo and Gravity Spy in astronomy; and Etch-a-Cell, Phylo and Eyewire in medicine. However, these applications
tend to focus on ways that AI extends the capabilities of volunteers or science teams. We see opportunities in CS for
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continuous refinement and expansion of machine learning (ML) by volunteers in the same setting where machines
offer humans ways to amplify their learning.

The challenge is how to facilitate human and machine learning so that the two do not simply counter one another.
For instance, ML systems simply automating volunteers’ tasks might remove opportunities for productive learning
among volunteers. However, if ML gradually takes over low-level tasks, it might allow volunteers to focus on and learn
more intricate tasks as the technology efficiently manages routine responsibilities [15, 18]. While this scenario might
facilitate human learning in a project, attention must also be paid to machine learning. For instance, many algorithms
struggle with novel categories in the data that humans can detect, meaning that they would improve if they could
learn from humans. From a project design perspective, strategies are needed to facilitate and build synergies between
human and machine learning. The notion of augmentation [16] can be helpful where augmentation approaches AI
as a collaborative tool, emphasizing close cooperation between humans and AI. Scholarly investigations suggest that
augmentation is advantageous for complex and ambiguous processes such as learning [4, 8, 9].

2 THEORY

Learning theories focus on the development of internalized knowledge or skills that create a lasting behaviour change
[10]. The question we address is how to structure activities to support such learning. We draw on the notion of a zone
of proximal development (ZPD) to shift the focus from mental and cognitive processes to observable behaviours of
people and AI working to achieve some objective. Skills or tasks are not assessed as abstract demands; instead, what
matters is the exhibition of skills and demands through the process of achieving an objective [13, p. 31]. For instance,
Kaptelinin & Nardi [13] note that saying that someone is “good at math” can be misleading since performance can vary
significantly depending on how the problem is posed [13, p. 31].

We can thus distinguish between three categories of tasks: (A) tasks that can be done without assistance, (B) tasks
that can be done only with assistance (the ZPD), and (C) tasks that cannot be done even with assistance. The theory
posits that people learn best when they work on tasks in their ZPD. Repeating tasks they can already do (category A)
will not expand their capabilities, nor will attempting and failing at tasks that are impossible for them (category C).
However, tasks that are done with assistance increase their capacity as they gradually learn to do them on their own,
shifting them to category A. Further, these new skills may be the foundation for attempting tasks that would earlier
have been impossible, thus moving some tasks from category C to the ZPD.

The original ZPD concept posited that other, more knowledgeable people would provide assistance on tasks in the
ZPD. Such assistance may be possible in some CS projects. For instance, eBird’s novice bird watchers may go birding
with a more experienced birder, learning from them about new species or observational techniques. However, other
projects do not afford human support. For instance, Zooniverse projects do not let learners directly see how others work
or ask for advice while doing a task. Yet, even in such projects, there are non-human sources of assistance, e.g., tutorial
materials, feedback, or what Mugar et al. [14] termed practice proxies, community discussions of a task viewable after
it is completed that hint at how to perform it.

As an example, many CS projects rely on humans’ ability for pattern recognition. Some of the patterns may be
readily apparent even to newcomers to a project. Galaxy Zoo asked about simple shapes and most Snapshot Serengeti
volunteers can distinguish lions and elephants. However, distinguishing similar species of antelopes or gazelles may
require frequent reference to the training materials, and even then, uncertainties may remain. This situation indicates
a newcomer’s ZPD: identifying antelopes is possible but requires assistance. There will also be tasks that volunteers
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cannot do even with assistance, e.g., identifying animals at a distance. Yet, even antelopes at a distance may become
interpretable with practice and assistance.

So far, we have been discussing human activities and human ZPD. Where does this leave us regarding machines’
learning capabilities and our search for synergies between human and machine learning? If learning is defined as
expanding the range of tasks mastered, it does not matter if the learner is a human or a system. By considering when
machines may learn and humans can take on the assistant role, we can approach the ZPD from a machine-learning
perspective. We can have the situation in which a machine can do some tasks without assistance (i.e., automation),
other tasks the machine can do only with assistance, and many tasks the machine cannot do even with assistance. In
short, we envision a ZPD supporting machine learning parallel to a ZPD supporting human learning.

These two ZPDs, one serving humans and the other machines, do not have to work independently. If we accept that
humans and machines can both learn and assist each other, then synergies between the two should be possible. The
human and the machine ZPD augment each other by assisting the other in their ZPD, i.e., helping them to do tasks they
can not do alone.

3 METHOD

To explore these ideas, we have designed, deployed, and evaluated a CS project called Gravity Spy [20, 21], hosted on
the Zooniverse platform [17]. Gravity Spy supports the Laser Interferometer Gravitational-Wave Observatory [LIGO, 1],
which detects gravitational waves created by cosmic events such as black-hole mergers. Because of the extraordinary
sensitivity of the detectors, they record orders of magnitude more noise events (called glitches) than genuine detections.
Glitches can obstruct or confuse astronomical detections, so LIGO scientists seek to find and fix their causes to improve
detector performance. The task assigned to volunteers and the ML in Gravity Spy is to identify the classes of glitches.
LIGO scientists have identified many classes of glitches with distinct appearances and known or unknown causes. Most
glitches are classified by volunteers into one of the 26 known classes (or “None of the above”), creating a dataset of
identified glitches to support exploration for their root causes. More advanced volunteers handle glitches that do not fit
a known class by compiling sets of glitches of similar appearance that may be instances of a new class. We draw on
many different sources of data collected throughout the project: interviews with LIGO and machine learning scientists
(domain experts), interviews with volunteers, trace data documenting system use, participant observation, and our use
of the system. Other publications provide more details about these data collection and analysis efforts [e.g., 7, 11, 12].

4 FINDINGS

In Gravity Spy, human learners, in the form of volunteers, and the ML model serve as subjects striving to classify LIGO
glitches. Learning to identify existing and new glitches is crucial to that process. In doing so, humans and ML act as
mediators for each other’s activities. We will discuss each, starting with the volunteers’ human learning mediated by
the ML model.

4.1 Machine classification supporting human learning

In many image-classification citizen-science projects, newcomers face the daunting task of learning to distinguish
among many options. For instance, in the popular Snapshot Serengeti project, volunteers must select from 56 possible
species, many unfamiliar and distinguished only by subtle features. In contrast, in Gravity Spy, participants progress
from learning a few obvious glitch types to classifying many glitch types with less obvious features, a design approach
informed by ZPD as they advance through increasingly challenging workflows. The ML guides the human learner by
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determining the workflow to which a particular glitch is assigned. Glitches that ML confidently classified are assigned
to beginner workflows. Multiple beginner workflows contain an increasing number of glitch classes.

Specifically, in workflow 1, volunteers are currently shown glitches that the ML has classified with high confidence
as belonging to just two common and easily distinguished glitch classes: Blip and Whistle. High ML confidence for a
glitch means they are likely (though not certain) to be examples of a class. The classification interface offers just those
two options, plus “None of the above” to capture instances where the ML is mistaken. Note that the volunteers are
never shown the ML classification, but they have access to tutorial materials describing the task and the classes of
glitches. When the volunteers have mastered these glitches, as assessed by their correctness in classifying gold-standard
data, that is, data classified by LIGO scientists, they are promoted to the next level. Volunteers are given feedback after
classifying gold-standard data, another kind of assistance. In work flow 2, volunteers are shown additional glitches
with high ML confidence, i.e., Koi Fish, Power Line, and Violin Mode classes. As the volunteers move to increasing
workflow levels, new classes are added as options until they see all of the glitches.

4.2 Human classification supporting machine learning

The ML is also a learner. Its ZPD moves by increasing its accuracy in identifying known glitch classes and expanding the
range of classes known. In both cases, the volunteers assist the ML. The model was initially trained on approximately
7,700 glitches classified by LIGO scientists into 19 initial classes. In the project’s initial phase, it was not accurate
enough, so input from volunteers was crucial to increase confidence in the classifications or to override them if enough
volunteers disagree with the ML classification. The training set has now been supplemented with glitches classified
by volunteers to include nearly 10,000 labelled glitches over 23 classes [21] and continues to expand. The increase in
the training set (along with model improvements) has greatly improved the model’s accuracy. Indeed, the ML is now
sufficiently accurate that we are reconsidering whether volunteers should be involved in classifying all glitches (i.e., the
machine seems capable of some tasks without assistance).

Second, a significant limitation of the ML classifier is its inability to cope with novelty, being able to identify only
the classes on which it was trained. In other settings, these issues might be due to out-of-distribution data, but for
LIGO, they are expected, as the detectors continually evolve: some glitches are fixed, but new ones emerge. For instance,
in the most recent LIGO detector run, volunteers noticed that the ML had started to misclassify a new class of glitch
as Whistles, one of the known classes [19]. After closer examination, the science team realized that Whistle glitches
seemed to have disappeared after the detectors were updated. However, new glitches had emerged that the ML was not
trained on and which it misclassified as Whistles. Meanwhile, the human volunteers had little trouble distinguishing
the novel glitches and brought them to the science team’s attention relatively quickly (that is, even the novice workers
in work flow 1 were able to correct the ML’s misinterpretation). To cope with novel classes of glitches in lower-level
workflows, volunteers have the option of “None of the above” to correct the ML. In higher workflows, the volunteer
task shifts from classifying to searching for novel glitch classes to retrain the ML. Higher workflows include glitches
with lower ML scores, and the highest-level workflow contains only glitches that the ML had trouble classifying or
that were identified as “None of the above” in a lower workflow. Volunteers in these workflows develop collections of
glitches with similar novel appearances that are possible instances of novel glitch classes.

Following the identification and curation of a potential new glitch class, volunteers can nominate the class for
addition to the system, which expands ML’s capability. They do so by creating a New Glitch Proposal, including a name,
description, exemplar, and their collections of similar images. LIGO scientists evaluate the proposals for robustness and
usefulness of the proposed glitch class for debugging the detector. If accepted, the new class is included in the list of
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glitch classes on which the ML is trained (using the provided examples initially) and made available to volunteers in the
classification interface.

Third, the inability of ML to deal with novelty could be addressed technically by employing unsupervised learning
techniques to cluster glitches to identify classes beyond those already known. We have explored such techniques, for
instance, using the ML model to extract properties of glitches in a high-dimensional feature space and then clustering
in that space to identify morphologically similar images. However, the resulting clusters still require inspection by a
human for coherence and vetting by LIGO scientists before they can be considered for addition to the ML training set
and the Zooniverse system. In other words, even in this mode, the machine learning needs human supervision to learn.

4.3 Co-augmentation

As discussed, human and machine ZPDs do not exist independently in Gravity Spy. The project design strives to build
synergies between human and machine learning where the human activities augment the machine’s ZPD while the
machine activities augment the human ZPD, meaning that the knowledge is not completely complementary. We will
take the development of new glitch classes as an example of such co-augmentation. To assist the ML in dealing with
new glitches, advanced volunteers focus on finding new glitch classes, noted above as a key volunteer activity. One
of the challenges in this work is collecting a large enough sample of glitches to justify the need for a new class and
on which to retrain the ML model. To augment this activity, we built Similarity Search, a tool using the unsupervised
clustering approach described above to locate glitches similar to a given glitch. Details of the clustering algorithm and
search approach can be found in [2, 3, 6]. Users can evaluate the metadata of retrieved glitches, decide which images to
include or exclude, and export the search results to a new Zooniverse collection. As we do not have ground truth for
which glitches are related, our evaluation is based on volunteer feedback. The tool is felt to be effective in filtering out
non-matching glitches, enhancing the purity of the set the volunteer will examine, thus saving time and effort. In short,
we see a co-augmentation where human learners (of all levels of expertise) assist the machine in learning new glitch
classes while the machine assists the humans (mostly experts) by easing the burden of sifting through a large dataset in
search of those new classes.

In summary, the Gravity Spy project illustrates how different learners can support each other: machine learning
supports human volunteers learning to classify by keeping them in their ZPD and the products of the human classification
support improvements to the ML to enable it to be more accurate and to do more. And further, the two can work
together on tasks that neither can do entirely independently.
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