
The social structure of Free and Open Source software development

Kevin Crowston and James Howison
School of Information Studies, Syracuse University

{crowston,jhowison}@syr.edu

Abstract

Metaphors, such as the Cathedral and Bazaar, used to describe the organization of FLOSS projects

typically place them in sharp contrast to proprietary development by emphasizing FLOSS’s distinc-

tive social and communications structures. But what do we really know about the communication

patterns of FLOSS projects? How generalizable are the projects that have been studied? Is there

consistency across FLOSS projects? Questioning the assumption of distinctiveness is important be-

cause practitioner-advocates from within the FLOSS community rely on features of social structure

to describe and account for some of the advantages of FLOSS production.

To address this question, we examined 120 project teams from SourceForge, representing a wide

range of FLOSS project types, for their communications centralization as revealed in the interac-

tions in the bug tracking system. We found that FLOSS development teams vary widely in their

communications centralization, from projects completely centered on one developer to projects that

are highly decentralized and exhibit a distributed pattern of conversation between developers and

active users.

We suggest, therefore, that it is wrong to assume that FLOSS projects are distinguished by a par-

ticular social structure merely because they are FLOSS. Our findings suggest that FLOSS projects

might have to work hard to achieve the expected development advantages which have been assumed

to flow from “going open.” In addition, the variation in communications structure across projects

means that communications centralization is useful for comparisons between FLOSS teams. We

1

The social structure of Free and Open Source software development 2

found that larger FLOSS teams tend to have more decentralized communication patterns, a find-

ing that suggests interesting avenues for further research examining, for example, the relationship

between communications structure and code modularity.

Introduction

There is a pervasive perception that Free/Libre and Open Source Software (FLOSS) development

is different; different from proprietary, or traditional, or commercial or whatever other forms of

software development it is that exist beside FLOSS. The ways in which FLOSS projects are per-

ceived to differ are usually quite broad: they use different licenses, employ distinctive toolsets

such as SourceForge and are largely composed of volunteers rather than paid employees, to name

just a few. Dramatizing this perception, Eric Raymond coined his well-known comparison, “The

Cathedral and the Bazaar” Raymond (1998a) which summarized these perceived differences neatly

by drawing analogies to different types of organizations, each with distinctive patterns of decision

making and communication.

Alan Cox, a senior Linux developer, introduces two more organizational metaphors, the “town

council” and the “clique,” in an essay published on Slashdot in 1998. Cox provides a “guide to

how to completely screw-up a free software development project” by describing the early days of

the Linux on 8086 project, “one of the world’s most pointless exercises” and therefore one that

has great “Hack Value.” Cox writes that this obscurity meant that there were really only two

or three people with both the skill and interest required, but also many “dangerously half-clued

people with opinions—not code, opinions.” These “half-clued” participants acted like a “town

council” which created so much ineffectual noise that the core developers were lead to abandon the

“bazaar model” and, using ‘kill-files,’ formed a “core team” which, Cox writes, “is a polite word

for a clique.” Cox argues that ignoring the “half-clued” was understandable but badly mistaken

and ultimately caused the project to stall, not least because the real programmers were unable to

help the wannabe programmers to learn to contribute usefully and thus change the unproductive

“town council” into a productive project.

The social structure of Free and Open Source software development 3

Effective FLOSS projects, then, are organized like “bazaars” but ideally not like “town councils”

or “cliques” and certainly not like teams building a “cathedral.” Each of these organizational

metaphors place communication at the center of their understanding of FLOSS development and its

distinctiveness: The energetic hubbub of the bazaar contrasts with the solemn controlled ceremonies

of the cathedral, the ineffectual carping of a town council and the insular exclusion of the clique.

Not only, then, are FLOSS projects expected to differ from proprietary development in licenses,

tools and motivations for their work but also in their communication style.

Even those that are not entirely comfortable with these characterizations of the organization of

FLOSS development (eg Krishnamurthy (2002)), rarely go so far as to suggest that there are not

clear differences between FLOSS and proprietary development. The emphasis on comparison with

proprietary development, combined with the fact that most research on FLOSS has been case

studies of particular projects, has so far allowed the perception that there is a distinctive FLOSS

organizational pattern, and set of practices, to go largely unquestioned.

This is particularly problematic because, as we show below, many of supposed strengths of FLOSS

development are closely linked to the unique communications or social structure of the projects.

The practicioner-advocate literature appears to be based on its authors’ experiences with projects

that are important, yet quite limited in number. It is assumed, rather than argued, that these

particular desirable social structures, and the strengths they impart, will naturally be available to

and be found in FLOSS projects in general. If that were not to be the case. and it is far from

obvious that it is, much of the argument for “going open” would need to be reframed. Certainly a

greater community effort to intentionally create these desirable communication structures in FLOSS

teams would be called for.

The question of consistency in social structure is also important to researchers examining FLOSS

because it speaks directly to the boundaries of the phenomenon to be studied. If consistency

in structure is found then credence is lent to the idea that it is sensible to study FLOSS as a

phenomenon apart, but if consistency is not found credence is lent to the idea that FLOSS practices

should be studied as part of a broader phenomenon of change in software engineering practices,

such as the move towards distributed and agile development.

The social structure of Free and Open Source software development 4

This paper, therefore, questions the assumption of consistency in social structure through an em-

pirical examination of the communications structure of FLOSS projects, one of the central themes

raised in the metaphors above. Specifically, for reasons discussed below, we assessed the consistency

of communications centrality in bug-fixing processes to see if there was consistency across FLOSS

projects.

We first briefly review the concept of social structure and introduce communications centralization

as a relevant measure. We then examine both the practicioner-advocate literature and the academic

literature that has begun to address the social structure of FLOSS projects before outlining our

method, presenting our results and drawing conclusions.

Understanding Social Structure

Investigating social structure is a useful way to understand team practices. It allows research to

begin to investigate questions of coordination, control, socialization, continuity and learning—all

topics of great interest in studies of collaborative groups. Social structure has also been gaining

interest in software engineering. As Scacchi writes, “little is known about how people in these

communities coordinate software development across different settings, or about what software

processes, work practices, and organizational contexts are necessary to their success.” Scacchi

(2002) Software engineering has increasingly come to understand that there are predictable rela-

tionships between the structure of code and the social structure of the development team; better

understanding of social structure can improve development planning.

Social structure is also useful in risk management because it allows an assessment of questions

like, “who is so crucial to the project that their withdrawal could threaten its existence?” That

this need for risk management is not limited to the proprietary community was confirmed in an

interview we conducted with a member of the Apache Foundation’s incubator team at ApacheCon

2003. The Apache foundation is a prestigious umbrella organization for teams developing FLOSS

and has created an incubator to ensure that the projects seeking to join the Foundation are of

sufficient quality and longevity1. The incubator team indicated that they were concerned that

The social structure of Free and Open Source software development 5

overly heavy reliance on a small number of (possibly corporate funded) developers was a major

threat to the sustainability of the project and thus to the suitability of the project for Apache

incubation. Grasping the social structure of the project would assist in such risk assessments.

Inquiry into social structure is by itself, of course, not sufficient for a full understanding of these

questions. For that it must be combined with qualitative and interpretivist analysis of the sub-

stance of code and communication. Inquiry into social structure is simply a beginning towards

understanding. However, as in this paper, this journey can provide useful insights through com-

parisons and the identification of common or odd patterns, or changes in patterns, that are worth

investigating in more detail.

It is helpful to consider three aspects of social structure: individuals, their actions and their interac-

tions. By considering individuals we can obtain a picture of the group: is it small, large, constant,

growing or shrinking? Further insights can be gained by understanding the patterns in the actions

of those individuals: who is doing the work? Is it evenly spread between the project members, or

concentrated in sub-groups? Is there specialization, do specific roles exist or do project members

all contribute in the same way?

Inquiry need not, however, stop with these questions because when humans collaborate they interact

with each other. Research can therefore focus on patterns of interactions between individuals

engaged in action: who talks to whom and how often? Where and how do they talk? Are there

individuals or sub-groups who are central to the project because communications flows through

them, or do the project’s members most often talk directly to one another? It seems likely that

interaction is where we must look for questions of coordination, control and social learning. Inquiries

into patterns of interaction can be undertaken through social network analysis (SNA) and this is

the approach adopted in this paper.

One measurement of social structure is centrality. In general, individuals who have more interactions

are more central than those who have less. Central individuals, therefore, are highly active and

provide a crucial linking point for a social network. We provide more detail on the analytical

definition of centrality in Section , below.

The social structure of Free and Open Source software development 6

In the context of FLOSS development, it is useful to distinguish between two forms of central-

ization which are implicit in, and will structure our review of the literature below: development

centralization and communications centralization. In terms of our classification above, development

centralization is an action measure while communications centralization is an interaction measure.

Development centralization refers mainly to the writing of code. Projects highly centralized on this

measure would have a small core of regular code committers, whereas more decentralized projects

would have code written by a greater proportion of the people involved in the project. There

is no doubt that development centralization is an important aspect of FLOSS structure. Indeed,

without the production of code there would be nothing to study. However there are numerous prac-

tices which lead up to the code submission process that we identify as important in understanding

the social structure of FLOSS teams and especially important in understanding them as virtual

teams. These interactive practices include coordination, socialization and group learning. The

structures implicated in these practices can best be described through a study of communications

centralization.

Communication centralization refers to centralization in the communications between project mem-

bers that are found in, for example, email, bug-reporting systems and instant messaging. Projects

with high communications centralization would have a small number of people who speak to a large

number of people who don’t speak amongst themselves but only back to the small central group.

By contrast, a decentralized communications network would exist in a project when most projects

members speak to a large number of other project members, not just a limited group. Commu-

nications centralization is one concept that can assist in measuring the communication structures

suggested by the metaphors of cathedrals, bazaars, town councils and cliques.

We now review the way the concept of social structure and centralization has been discussed in the

literature researching FLOSS development, both practitioner-advocate and academic. As we shall

see the majority of studies of social structure in FLOSS have focused on development centralization

and have not yet adequately addressed communication centralization.

The social structure of Free and Open Source software development 7

Social structure in practitioner-advocate literature

The practitioner-advocate literature claims that particular aspects of social structure reflect and

facilitate the advantages of FLOSS production. These strengths are often cited in arguments for

“going open” or for the superiority of FLOSS development. It is generally assumed that they are

available to or should be found within any FLOSS project.

Raymond (1998a) introduces what he dubs ‘Linus’ Law’: “Given enough eyeballs, all bugs are

shallow.” He goes on to report that Linus Torvalds, the founder of Linux, believes that “the per-

son who understands and fixes the problem is not necessarily or even usually the person who first

characterizes it.” He writes that Linus says, “Somebody finds the problem ... and somebody else

understands it.” Though the focus of Linus’ law is on absolute numbers of participants, develop-

ers, co-developers and active users, nonetheless it also appears to require that the communications

structure of bug-fixing will include many participants, each expanding on reports, providing alter-

native conceptualizations of the problem or attempting solutions. This ‘law’ is often relied upon

when arguing that FLOSS development leads to more secure and less buggy products.

It is also claimed that FLOSS projects have an open development process in which planning is de-

centralized. Eric Raymond praises the openness of FLOSS projects to suggestions and involvement

from outside the initial developer or core team, “the process produces a self-correcting spontaneous

order more elaborate and efficient than any amount of central planning could have achieved.”

(Raymond, 1998a) Kuwabara (2000) characterises Raymond (1998a) as suggesting that the Linux

model is “decentralized development” surrounded in “clamor ... anyone is welcome—the more peo-

ple, the louder the clamor, the better it is.” The image is one that suggests that FLOSS projects

would would tend towards decentralized communications structures. This structure is placed in

marked contrast to the top-down ‘cathedral’ of proprietary software engineering centered on the

“architect.” The requirement for such decentralized communications structures, if the notion of an

open development process is to be borne out, is increased by its interaction with the norm against

project forking (Raymond, 1998b). If projects are not to be forked, yet the project is to be open to

user influence, then decentralized structures, which decrease opportunities for control and increase

The social structure of Free and Open Source software development 8

opportunities for input, must be expected.

Alan Cox addresses some of these issues in his analysis of the Linux on 8086 project (Cox, 1998)

discussed in the introduction. Recall that he presents, “a guide to how to completely screw-up a free

software development project” and argues that the developers in this project (including himself)

“walled themselves off” from the participants, forming a “clique” not a bazaar. They did this by

using a ‘kill-file,’ which meant that the clique did not read all the messages on the mailing list—those

from persons in the ‘killfile’ go straight to the trash, unread. These actions would have resulted

in a centralized network because members of the clique would have had intensive interactions

only amongst themselves: other individuals would send messages to those in the clique, but not

vice versa. The flow would have been one-way towards the centre. This ‘kill-file’ attitude was,

Cox argues, an understandable but ultimately wrong response. Cox argues that no matter how

important it is to reduce distractions from ‘town councillors,’ excluding them from discussions is

too harmful to the practice of free software to be considered. Instead the project must stimulate

and permit broad discussion (but keep discussions focused on code that exists rather than merely

ideas).

Simultaneously, however, the practitioner-advocate literature also praises social-structures which

appear to be centralized. For example Raymond (1998b) spends significant time discussing the

concept of ‘ownership,’ which he identifies as an exclusive right to redistribute modified versions.

He suggests that this right of ‘ownership’ is informal but strongly normative and often persists in

the same individual that founded the project—a feature found, for example, in the Linux project.

The importance of ownership suggests that a certain centralization is crucial to the reputation or

gift economy that has been a successful driver of FLOSS production. Yet to complicate this picture

further, Raymond (1998b) suggests that ‘ownership’ is coupled with a norm amongst central figures

to “speak softly.” Using the distinction between development and communications centralization

introduced above this suggests that high development centralization might not be reflected in high

communications centralization.

The picture emerging from this literature clearly highlights social structure as an important aspect

of FLOSS development practices. The practitioner-advocates appear to be in agreement that

The social structure of Free and Open Source software development 9

FLOSS projects are effective in part because of the way they are structured and that this structure

is, in some way, new. That their discussion appears to describe possibly conflicting structures may

indicate the ‘bluntness’ of measures like network centralization or reflect, as we feel it might, the

tendency to discuss certain personally known anecdotes for advocacy rather than an attempt to

characterize all FLOSS projects. Certainly it is worth recognizing that the practitioner-advocates

suggestions are based on a necessarily limited, even if deep, experience of FLOSS projects and

might not be true across all projects. That the practicioner-advocates choose to continually refer

to FLOSS social structure shows that they intuitively consider it important and clearly invites

confirmatory research which attempts to assess whether there is, in fact, consistency in FLOSS

social structure.

Social structure in academic studies of FLOSS

The academic literature examining FLOSS development is rapidly growing and has begun to in-

vestigate the social structure of projects. Researchers have studied both size and action patterns,

concentrating on code production, but few have addressed interaction between project members.

Primary among the currently published FLOSS research have been a number of case studies (Cox,

1998; Gacek et al., 2001; Moon & Sproull, 2000; Mockus et al., 2002). That there have been only a

limited number of many-project studies reflects the early stage of this research on this subject, the

complexity of the phenomenon and the difficulty in obtaining comparable data across projects.

Krishnamurthy (2002), one of the limited number of many-project studies, challenged the belief

that FLOSS projects are typically team-based at all. While his study was limited to the top 100

projects on SourceForge, he found a surprising number of one developer projects and a very strong

skew to small developer teams which was confirmed in our preliminary data.

It is possible that this skew reflects the large number of still-born or ‘code-dumped’ projects that are

hosted on SourceForge. It is an open question (which our study doesn’t answer) as to whether these

projects, which are clearly centralized in development, are also centralized in their communications

structure. It is also an open question as to whether scholarship on FLOSS practices should take a

The social structure of Free and Open Source software development 10

Figure 1: A synthesised FLOSS development team structure

great interest in these projects or read a great deal about the effectiveness of FLOSS practices into

their apparent failure.

Together the case studies of FLOSS projects suggest a hypothesized model of FLOSS development

as having a hierarchical or onion-like structure, which we have attempted to characterize in Figure

1 (Cox, 1998; Gacek et al., 2001; Moon & Sproull, 2000; Mockus et al., 2002). The focus of these

studies has largely been on the contribution of code and they therefore have largely discussed

development centralization. At the center of the onion are the core developers, who contribute

most of the code and oversee the design and evolution of the project. In the next ring out are

the co-developers who submit patches (e.g. bug fixes) which are reviewed and checked in by core

developers. Further out are the active users who do not contribute code but provide use-cases

and bug-reports as well as testing new releases. Further out still, and with a virtually unknowable

boundary, are the passive users of the software who do not speak on the project’s lists or forums.

Mockus et al. (2002) studied the Apache httpd project and found rapidly decreasing centralization

from new code contribution, to bug-fixes to bug reporting. They found that development was

quite centralized with only about 15 developers contributing more than 80 percent of the code

for new functionality. Bug-reporting, on the other hand, was quite decentralized, with the top 15

reporters submitting only 5 percent of problem reports in the Apache project. They summarize

this finding by hypothesizing that, “In successful open source developments, a group larger by an

order of magnitude than the core will repair defects, and a yet larger group (by another order of

The social structure of Free and Open Source software development 11

magnitude) will report problems.” (Mockus et al., 2002, p. 329). We have tried to illustrate this

summary in Figure 1.

The case studies cited above only briefly touch on the topic of communications centralization.

Moon & Sproull (2000), in their case study of the development of Linux, describe the highly

skewed distribution of traffic on the Linux mailing lists, suggesting centralization in communication

patterns, but their analysis is limited to counting postings and they do not examine interactions.

That is, they describe who is talking, but not who is talking to whom. Similarly Mockus et al.

(2002) describe patterns in initial bug-reports but don’t examine patterns of communication which

follow up these reports and which show the FLOSS development process in action. It is these

interactions which are the focus of our study below.

Our study

To address the question of whether FLOSS projects exhibit consistency in their social structure

we chose to examine the network centrality of communication during the bug-fixing process. Our

findings are therefore limited to an understanding of communications structure in the bug-fixing

process. We chose to study bug-fixing because it provides a “microcosm of coordination problems”

(Crowston, 1997) and is a collaborative task in which, as Raymond (1998a) paraphrases Linus

Torvalds, the people finding the bugs are different from those that understand the bug and those

that fix the bug. The collaboration of bug-fixing potentially produces rich interactive collaborations.

Finally, as described above, bug-fixing is the site of claims of effectiveness made for FLOSS projects.

To explore the structure of the teams we selected projects from SourceForge and downloaded project

and bug-database data using web spiders. We then extracted interaction data from each bug-report

to create interaction matrices. These were analyzed using social network analysis (SNA).

As befitting a study of FLOSS, the majority of our analysis was performed using free software,

the spidering and parsing of SourceForge data was done with perl scripts and the social network

analysis largely using the sna package Butts (2004) from the R-project(R Development Core

Team, 2004). The only non-free software we used was network graphing software to produce some

The social structure of Free and Open Source software development 12

illustrations. As befits an investigation of FLOSS, the scripts and data (both raw and parsed) used

in this analysis are available from our project website 2 and we have reported our experience in

this large scale FLOSS data collection elsewhere (Howison & Crowston, 2004) 3.

Data

To create a sample of FLOSS projects, we selected from projects hosted by SourceForge, a free Web-

based system that provides a range of tools to facilitate OSS development4. At the time of our study,

SourceForge supported more than 50,000 OSS projects on a wide diversity of topics (the current

figure is around 88,000). Clearly not all of these projects were suitable for our study: many are

inactive, previous studies have suggested that many are in fact individual projects (Krishnamurthy,

2002), and some do not make bug reports available or do not use the SourceForge Tracker system,

which was the source of our data.

We restricted our study to projects that listed more than 7 developers and had more than 100

bugs in the bug tracking system at the time of selection in April 2002. We chose 7 developers as a

criteria because we are interested in team interactions, not individual projects, and communicative

interactions. We chose 100 bugs as a criteria to provide sufficient interactions to give a robust picture

of the social network. Together these two criteria also meant that the projects were relatively active.

Somewhat surprisingly we identified only 140 projects that met these criteria. Unfortunately, space

does not permit a full listing of the projects, but Table 1 lists examples of the projects to give a sense

of the sample. Those familiar with OSS may recognize some of these projects, which span a wide

range of topics and programming languages. Because we were concerned that some projects do not

host all their bugs on SourceForge we examined a sample of the chosen project’s instructions on how

to submit bugs and satisfied ourselves that the SourceForge was a main repository. For example,

python’s homepage has a link “Report bugs” that links directly to the SourceForge tracker5.

We based our analysis on the SourceForge bug tracking system. This system enables users and

developers to report and discuss bugs. As shown in Figure 4, a bug report includes basic informa-

tion about the bug that can be followed up with a trail of correspondence. Our spider program

downloaded all bug report pages for the selected projects. Data were collected in April 2003. Un-

The social structure of Free and Open Source software development 13

Project name Short description
curl Command line tool and library for client-side URL transfers.
python Scripting language similar to perl and ruby.
gaim A GTK2-based instant messaging client.
gimp-print Top quality printer drivers for POSIX systems.
htdig Complete world wide web indexing and searching system.
jedit A powerful text editor.
lesstif LGPL’d re-implementation of Motif.
netatalk A kernel-level implementation of the AppleTalk Protocol Suite.
phpmyadmin Handles the basic administration of MySQL over the WWW.
openrpg Play Role Playing Games in real-time over the Internet.
squirrelmail A PHP4 Web-based email reader.
tcl Tool Command Language.

Table 1: Examples of projects included in sample

fortunately, between selection of projects and data collection, some projects restricted access to

bug reports, so we were able to collect data for only 124 projects. Four projects were found to

have fewer than 7 participants in the bug forums (even though their homepage listed more than 7

developers) and were therefore excluded from the analysis.

From the 120 projects that we did analyze we obtained data on a total of 61,068 bug reports,

an average of 509 per project. The median number of bug-threads per project was 286, and the

standard deviation was 599 indicating a skewed distribution of bug report counts, that is confirmed

by the illustrated distribution in Figure 2. Note that these numbers differ from the number of

bug-reports reported on the website because we only counted bugs in which at least one reply had

been posted.

The posters of bug reports and messages are identified by a SourceForge ID. We counted a total

of 14,922 unique non-anonymous IDs, of whom 1,280 were involved in more than one project (one

was involved in 8). The average project size, as measured by a count of unique SourceForge IDs

posting to the tracker, was 140 posters, but again the distribution was highly skewed with the

smallest having only 9 posters, and the largest having 1521 posters and the median project having

86. The distribution of project sizes is shown in Figure 3 where the largest projects in the tail were

gaim, python and dcplusplus. As should be expected there is a high correlation between project

size and the number of bug threads in the SourceForge tracker (r = 0.84). This accords with the

The social structure of Free and Open Source software development 14

Number of Bug threads

Number of bug threads

N
um

be
r

of
 P

ro
je

ct
s

0 500 1500 2500 3500

0
5

10
20

30

Figure 2: The distribution of the number of
bug-threads for each project.

Bug−fixing community size

Number of unique posters

N
um

be
r

of
 P

ro
je

ct
s

0 500 1000 1500

0
10

20
30

40

Figure 3: The distribution of project size mea-
sured number of posters to the bug-
tracker.

intuitive understanding that larger communities find and communicate about more bugs.

Analysis and Findings

Since SNA analyzes interactions between actors, two key issues in the application of SNA are the

definition of an actor and of an interaction. In the SourceForge system, contributions to the system

are identified by a unique SourceForge ID, which we used to identify actors. It is possible that

a single individual could utilize multiple SourceForge IDs or that multiple individuals could share

one. However, we believe it is unlikely that many individuals do maintain multiple accounts both

because it would be cumbersome and there would no incentive to do so. Indeed, because reputation

accrues to an ID, we believe that most individuals will want to maintain a single ID. Therefore we

used the SourceForge ID as our definition of actors in the system.

The definition of an interaction was more involved. For this analysis, we counted each message

associated with a bug in the bug tracking system as one interaction from the sender of the message

to the preceding identified sender (starting with the original bug reporter). Bug reports that

had no followup messages provided no interaction data while most bug reports provided multiple

The social structure of Free and Open Source software development 15

Figure 4: Example SourceForge bug report and followup showing coding of interactions

The social structure of Free and Open Source software development 16

interactions. The arrows in Figure 4 show how two interactions were coded for this fragment of a

bug report and messages. Note that messages appear on the page in reverse chronological order,

so the response to the original report is actually the bottom message (not shown), the top message

responds to the next, etc.

This definition of an interaction required several decisions about the source and destination of

the interaction. Since messages are labelled with the sender’s ID, identifying the source seemed

straightforward. However, when a message is posted by a non-logged-in user, the sender is listed

as ‘nobody’. These messages, which constituted an average of 23 percent of the messages for a

project (as low as 0 percent and as high as 60 percent for one project) are missing data for our

analysis. We considered several alternate strategies for handling this missing data. We rejected the

simplest solution of counting all nobody messages as being from the same sender because the large

number of such messages would have seriously biased our results. In projects with high missing

data, “nobody” would have been the most central actor. We experimented with two alternative

approaches: 1) simply dropping the ‘nobody’ interactions (taking care not to create fictitious

interactions in the process); and 2) recoding the ‘nobodies’ as a unique individual in each bug

report (e.g., using ‘nobody686314’ as the sender of all ‘nobody’ messages in bug report number

686314). The second approach retains interactions between another individual and a ‘nobody’ but

at the cost of possibly introducing fictitious characters. We found that the different treatments did

not materially alter our results, so to simplify our presentation we present analyses based on data

from which the missing data has been dropped.

We also had to decide on the destination of each interaction. It appeared from reading a sample

of bug reports that follow-up messages were sometimes directed at the previous messages and

sometimes to the original poster. Unfortunately, the true destination is difficult to determine

mechanically. Based on a sample reading of bug-messages we chose to code interactions as responses

to the sender of the previous message.

Once we had extracted the interaction data we first plotted the interaction graphs for a selection

of projects to visualize the interactions and get a sense of the data. We experimented with several

programs to draw plots, including NetMiner (Cyram, 2002) and Pajek (Batagelj & Mrvar, 1998).

The social structure of Free and Open Source software development 17

Figure 5: Plot of interactions for the openrpg
project bug report data, created in Netminer

Figure 6: Centralization plot for the openrpg
project bug report data, created in Netminer

Figure 5 shows the interaction plot for a typical project, openrpg, created in Netminer and hand

edited to reduce the number of labels. Note that in an interaction plot, the important information

is the pattern of connections between nodes rather than their precise locations (that is, the X-Y

dimensions of the graph are not interpretable). However, in these plots the distance between nodes

is an approximation of the strength of the ties, using the spring embedding algorithm of Kamada

& Kawai (1989). The plot in Figure 5 suggests that the interactions in this project are centered

on a few individuals, and that the peripheral individuals have typically only posted a bug report

(indicated by having only an arrow coming in).

The Netminer program can create a plot grouping individuals in the network by their calculated

centrality, with more central individuals at the centre and less central individuals on the periphery.

Figure 6 shows such a plot for the project in Figure 5 (note that the number of bands in the plot

was chosen by the researchers rather than as a result of the analysis). This plot confirms that the

impression from Figure 5 that a small number of individuals in this project have high centralities,

while the rest have low.

To numerically assess whether the projects had consistent social structures, we calculated the

network centralization score for each project. The calculations we report were computed using the

sna library in the R statistical package.

The social structure of Free and Open Source software development 18

There are many different definitions of centrality in the literature (Wasserman & Frost, 1994, Chp.

5) and the choice between measures is based on the substantive nature of the interactions. We

decided to use the most basic definition, which is based on degree: individuals who receive or send

more messages are more central than those that do not. This choice was based on the interpretation

that an individual who posts messages in reply to more bug reports is more central to the bugfixing

process than one who posts fewer. Finally, the degree counted can be the in-degree (number of

interactions received), out-degree (number sent) or sum of the two (sometimes called the Freeman

centrality). It is typical to attribute centrality to an individual who receives a lot of messages (in-

degree centrality), but we chose to use out-degree centrality because of our interest in identifying

individuals who contribute to a broad range of bug reports.

These individual centrality scores can be used to characterize group centralization, a property of

the whole network which is defined in terms of inequality in centrality scores: in a very centralized

network, one individual will have a high centrality and the others low, while in a decentralized

network, no single individual will stand out, i.e. all the centralities will be about the same, high

or low (Wasserman & Frost, 1994, p. 176). An illustrative example of a fully centralized network

is a star-shape where there is one individual who interacts with everyone and in which everybody

else only interacts with that central individual (giving ‘perfect’ inequality in centrality scores). At

the other end of the spectrum a fully decentralized network would exist when each network node

interacts with other nodes to the same degree6. Rather than a star-shape this network is a ‘thicket’

of interactions in which each person’s centrality score is the same. Figure 7 depicts these two

ideal-type networks.

Figure 7: The ‘star’ on the left shows full centralization (cent = 1.0) while the ‘thicket’ on
the right shows full decentralization (cent = 0.0).

The social structure of Free and Open Source software development 19

Specifically, the network centralization is calculated as the sum of the differences between the

maximum and each individual’s centrality score, normalized to range from 0 to 1 by dividing by the

theoretical maximum centralization. The theoretical maximum is the centralization that would be

obtained in a perfectly centralized star network where the only interactions are a central individual

talking to everyone else. The usual calculation of degree centrality is based on dichotomous data

(i.e., communication vs. no communication). We dichotomized the interactions with 1 message as

the cut-point, so individuals’ centralities were simply the count of the individuals with whom they

interacted (possibly including themselves). The full calculations are available in the scripts on our

website.

The distribution of project centralization measures

Figure 8 is a histogram of the project bug interaction centralization scores, calculated from di-

chotomized data, dropping ‘nobody’ interactions. Our data indicate that, for OSS projects en-

gaged in the bug-fixing process, communication structures are not uniformly centralized nor are

they uniformly decentralized. Rather, the calculated centralization measures display a considerable

range. The most centralized project had a centralization of 0.99, the least had a centralization of

0.13, the mean centralization was 0.56, and the standard deviation was 0.20. The median value

(0.58) was close to the mean showing an un-skewed distribution. Indeed the Shapiro-Wilk test

(Royston, 1982) for normality showed that the distribution cannot be distinguished from a normal

distribution (W= 0.9847, p-value = 0.1934 where low values of W would indicate deviation from

normality and the high p-value means that the hypothesis of normalcy cannot be rejected).

To check that this result was not an artifact of our calculations, we examined the interaction graphs

for projects with high and low centralizations. An example of a highly centralized network, for the

project curl, is shown in Figure 9 and of a large less centralized network, for squirrelmail, in

Figure 10. These plots were drawn with the program Pajek (Batagelj & Mrvar, 1998). Figure 9

clearly shows an extremely centralized network, but Figure 10 presents a more complicated picture.

There are still a large number of peripheral individuals, but the centre of the figure is made up of

a dense network with no clear centre.

The social structure of Free and Open Source software development 20

Distibution of project centralizations

outdegree centrality

nu
m

be
r

of
 p

ro
je

ct
s

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

Density plot of outdegree

N = 120 Bandwidth = 0.06783

D
en

si
ty

Figure 8: Histogram of communication centralization scores for projects engaged in the
bug-fixing process. Dichotomized data, dropping nobody interactions. Mean =
0.56, MD = 0.58, SD = 0.20

Although not reported here, we examined communications centralization on developer mailing lists

for the 52 projects where they were available. The results showed similar results with a wide

distribution of centralization scores.

Our first finding, then, is that our data demonstrate that the centralization of OSS projects engaged

in bug-fixing is in fact widely distributed, with a few highly centralized projects, a few decentralized

and most somewhere in the middle (the mean centralization is 0.56 and the distribution cannot

be distinguished from a normal distribution). This finding is strengthened, not weakened, by its

reliance on data only from SourceForge: if there was a systemic bias introduced by using data from

teams that all use the SourceForge tools, it should be to promote similarity, making our finding

of wide variance more unlikely and thus stronger. It does not seem true to say that there is a

consistent structure that distinguishes communication in the bug-fixing process of FLOSS projects.

We must, however, acknowledge the possibility that our analysis has disguised complex patterns

in the data. An acknowledged limitation of our analysis is that it groups all interactions over time

into one network. This raises the possibility that our statistics are artificially decentralized for

projects that are, in fact, highly centralized but have changed leaders. Such a project would show

The social structure of Free and Open Source software development 21

Figure 9: Plot of interactions for curl, a highly centralized project (centralization = 0.922)

up as much more decentralized than they are in day-to-day practice. We visually examined plots

to assess whether this has happened and did not find evidence of such a pattern. We are preparing

a dynamic analysis to fully assess this interesting possibility which would indicate a qualitatively

interesting episode to study.

Relationship between project centralization and project size

The very variance of the project centralization scores, however, make our centralization measure

of use in distinguishing between FLOSS projects. We were therefore interested in the relationship

between project centralization and project size because the group collaboration features which we

are interested in, such as coordination and learning, often face significant problems in scaling from

small to large groups. Given these interests the number of individuals involved in the bug discussions

was the appropriate measure of project size. We calculated Pearson correlations coefficients between

the centralization scores and the number of developers and active users who contributed messages

to the bug report tracking system. The count of developers was heavily skewed, so it was log

The social structure of Free and Open Source software development 22

Figure 10: Plot of interactions for squirrelmail, a decentralized project (centralization =
0.377)

transformed for analysis. This transformation is justified theoretically, since the size of the project

is the result of some kind of growth process. We found that the centralization scores are negatively

correlated with number of developers and active users who contributed to the bug reports. The

correlation is significant with r = −0.39 (N = 120 and p < 0.01) and is illustrated in Figure 11.

A possible interpretation of this finding is that in a large project, it is simply not possible for a single

individual to be involved in fixing every bug. As projects grow, they have to become more modular,

with different people responsible for different modules. In other words, a large project might be an

aggregate of smaller projects, resulting in what might be described as a ‘shallot-shaped’ structure,

with layers around multiple centres. Certainly Figure 11 indicates through its empty upper right

corner that there are no highly centralized large projects.

This finding provides an alternative interpretation of our study which might yet reveal consistency

across FLOSS projects by redefining the project as a group of sub-projects. However there are a

number of confounds which would need to first be assessed before such basing such a finding on

The social structure of Free and Open Source software development 23

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

10 20 50 100 200 500 1000

0.
2

0.
4

0.
6

0.
8

1.
0

Centrality and Project size (cor is −.39)

Project Size (number of ids, log scale)

ou
td

eg
re

e
ce

nt
ra

lit
y

gaim

python

screem
wings

bastille−linux

blox

panjasource

sdocms

drizeoslib zsnes

Figure 11: Plot of project centralization vs project size as measured by number of posters

this correlation. Firstly the decentralization found in larger projects might be caused by a change

of leadership, something which is more likely to happen in a large, and therefore probably older,

project. And secondly, there would need to be an independent measure of modularity to provide

the base-line to compare the ‘centres’ revealed through SNA. Such a baseline might be provided by

assessment of modularity in the code-base.

Conclusions

Our study demonstrates that a particular pattern of communications centralization or decentraliza-

tion is not a characteristic of FLOSS projects when engaged in the task of bug-fixing. This finding

is limited in what it tells us about social structure of FLOSS projects in general because it is based

only on communications in the bug tracker system on SourceForge. However, as we have argued,

the communications structure of a project is an important element in understanding a project’s

practices. Limiting enquiry to SourceForge actually strengthens our results because our results run

The social structure of Free and Open Source software development 24

against the expected bias; we found high range and a wide distribution, rather than tool biased

similarity.

It is too early to make overly broad claims regarding the social structure of FLOSS projects but

this study suggests that the received wisdom regarding the structure of communications in FLOSS

projects does not agree with the empirical analysis. It should therefore not be taken for granted

that FLOSS projects automatically inherit the practices and characteristics that have been found

in case studies or in the projects on which the practicioner-advocates base their understanding of

the FLOSS phenomenon. Further examination of other forms of social structure are required to

round out and complement the findings of this paper. For example it would be useful to look at

the communications in mailing lists, irc channels and, through interviews, face to face or telephone

communications both independantly and as a whole. It would be very valuable to examine the

development of these networks over time.

Our findings raise a number of important questions. Firstly, if the practitioner-advocates are correct

in linking social structure to the advantages of FLOSS development, does the lack of consistency

mean that not all FLOSS projects have access to these advantages? For researchers the question

of where to draw the boundaries of the FLOSS phenomenon becomes more important: research on

FLOSS practices that defines its subject by reference only to the license employed has, it seems to

us, a heavy burden to demonstrate that it is studying similar projects and teams. For example, it

might be necessary to treat sub-projects of large projects as basically separate projects, or it might

be necessary to acknowledge that the practices of interest are shared by proprietary development

teams employing, for example, agile software development techniques and thus expand the scope

of the phenomenon beyond FLOSS.

The variance in communication structure potentially makes social structure even more interesting

because it is way to differentiate between FLOSS projects. As an example of such usage we

showed a negative relationship between project size and communication centralization. On further

investigation this might be found to indicate the importance of achieving modularity in a project

that is seeking to grow. It is not clear yet though if the projects that grow are the ones that have

modularity or whether the inability to sustain centralized communications beyond a particular

The social structure of Free and Open Source software development 25

point is a driver of modularity. Certainly if growth is a goal of development, then the ability

to achieve modularity could be a crucial success factor. Our analysis therefore calls for more

detailed investigations of crucial phases in project growth and longitudinal analysis of FLOSS

social structure.

About the authors

Kevin Crowston is an Associate Professor of Information Studies at the Syracuse University
School of Information Studies. He is currently program director for the School’s PhD in Information
Transfer. Prior to moving to Syracuse, he taught for five years at the University of Michigan
Business School.

He received his A.B. (1984) in Applied Mathematics (Computer Science) from Harvard University
and a Ph.D. (1991) in Information Technologies from the Sloan School of Management, Mas-
sachusetts Institute of Technology.

His current research interests focus on new ways of organizing made possible by the use of informa-
tion technology. This work approaches the issue in several ways: empirical studies of coordination-
intensive processes in human organizations (especially virtual organization); theoretical character-
izations of coordination problems and alternative methods for managing them; and design and
empirical evaluation of systems to support people working together. For more information, please
visit http://crowston.syr.edu .

James Howison is a doctoral student at the Syracuse University School of Information Stud-
ies. His research interests include the social science of software engineering and ‘wireless grids’
(distributed ad hoc resource sharing).

In 1998 he received his honors undergraduate degree in economics and politics from the University
of Sydney. In 2001 he undertook graduate study in Software Engineering at the University of New
South Wales before transferring to the Syracuse University School of Information Studies Ph.D.
program in 2002.

He was recently published in IEEE Internet Computing and has presented at the International Con-
ference on Information Systems (ICIS), the annual conference of the Association for Public Policy
Analysis and Management (APPAM) and the International Conference on Software Engineering
(ICSE). He is a sometime contributor to Bibdesk, an open source bibliographic manager for OS X,
but certainly wouldn’t claim to be central ;) Contact him at jhowison@syr.edu.

Acknowledgments

The Authors would like to thank Hala Annabi, Chengetai Masango, Joseph Davis, Anand Natarajan
and Yeliz Eseryel for their assistance and comments on drafts. The Authors gratefully acknowledge
the support of NSF Grants 03-41475 and 04?14468.

The social structure of Free and Open Source software development 26

Notes
1http://incubator.apache.org

2http://floss.syr.edu

3The authors are making this paper available as a script that drives each step of the analysis and finally produces
the paper in PDF form. This is done to encourage the FLOSS research community to both use and truly peer review
our scripts and analysis. We hope that others will wish to build from this data-set and tools.

4The authors outline the difficulties, both theoretical and practical, of basing analyses of FLOSS purely on
SourceForge in Howison & Crowston (2004). For this study however the possible selection bias can be understood:
if there is a systemic effect of the SourceForge tools it should be to promote similarity in project structure. In our
findings we review this possible impact.

5At least one project, dri now links to a bugzilla installation rather than the SourceForge tracker, but up until
2002 the tracker was the central repository. Because our analysis is cumulative it is not time sensitive and the data
in the tracker, though older, is still a valid depiction of the communications structure at the time it was the central
repository.

6Note that a ‘circle’ or ‘ring’ structure in which every person spoke only to those on their ‘left’ and/or ‘right’ would
also produce a network with equal centrality scores and thus be a decentralized network. However this structure seems
unlikely to be found within FLOSS development teams and we exclude it from discussion for reasons of clarity.

References

Batagelj, V. & Mrvar, A. (1998), ‘Pajek: Propgram for large network analysis’, Connections
21(2), 47–57. 16, 19

Butts, C. T. (2004), ‘The SNA package for R’. Available from: http://erzuli.ss.uci.edu/R.
stuff/. 11

Cox, A. (1998), Cathedrals, bazaars and the town council, Slashdot feature story. Available from:
http://slashdot.org/features/98/10/13/1423253.shtml. 8, 9, 10

Crowston, K. (1997), ‘A coordination theory approach to organizational process design’, Organiza-
tion Science 8(2), 157–175. 11

Cyram (2002), ‘Netminer webpage’. Available from: http://www.netminer.com. 16

Gacek, C., Lawrie, T. & Arief, B. (2001), The many meanings of open source, Technical Report 1,
DIRC—Interdisciplinary Research Collaboration in Dependability. Available from: http://www.
dirc.org.uk/publications/techreports/papers/1.pdf. 9, 10

Howison, J. & Crowston, K. (2004), The perils and pitfalls of mining SourceForge, in ‘Proc. of
Mining Software Repositories Workshop at the International Conference on Software Engineering
(ICSE)’, Edinburgh, Scotland. Available from: http://floss.syr.edu/. 12, 26

Kamada, T. & Kawai, S. (1989), ‘An algorithmn for drawing general unidirected graphs’, Informa-
tion Processing Letters 31, 7–15. 17

Krishnamurthy, S. (2002), ‘Cave or community?: An empirical examination of 100 mature open
source projects’, First Monday. Available from: http://firstmonday.org/issues/issue7_6/
krishnamurthy/index.html. 3, 9, 12

Kuwabara, K. (2000), ‘Linux: A bazaar at the edge of chaos’, First Monday. Available from:
http://firstmonday.org/issues/issue5_3/kuwabara/index.html. 7

http://erzuli.ss.uci.edu/R.stuff/
http://erzuli.ss.uci.edu/R.stuff/
http://slashdot.org/features/98/10/13/1423253.shtml
http://www.netminer.com
http://www.dirc.org.uk/publications/techreports/papers/1.pdf
http://www.dirc.org.uk/publications/techreports/papers/1.pdf
http://floss.syr.edu/
http://firstmonday.org/issues/issue7_6/krishnamurthy/index.html
http://firstmonday.org/issues/issue7_6/krishnamurthy/index.html
http://firstmonday.org/issues/issue5_3/kuwabara/index.html

The social structure of Free and Open Source software development 27

Mockus, A., Fielding, R. T. & Herbsleb, J. D. (2002), ‘Two case studies of open source software
development: Apache and mozilla’, ACM Transactions on Software Engineering and Methodology
11(3), 309–346. 9, 10, 11

Moon, J. Y. & Sproull, L. (2000), ‘Essence of distributed work: The case of the linux kernel’, First
Monday. Available from: http://firstmonday.org/issues/issue5_11/moon/index.html. 9,
10, 11

R Development Core Team (2004), R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-00-3. Available from:
http://www.R-project.org. 11

Raymond, E. S. (1998a), ‘The Cathedral and the Bazaar’, First Monday. Available from: http:
//www.firstmonday.org/issues/issue3_3/raymond/. 2, 7, 11

Raymond, E. S. (1998b), ‘Homesteading the noo-sphere’, First Monday. 7, 8

Royston, P. (1982), ‘An extension of shapiro and wilk’s w test for normality to large samples’,
Applied Statistics 31, 115–124. 19

Scacchi, W. (2002), ‘Software development practices in open source communities: A compara-
tive case study’. (Position Paper). Available from: http://opensource.ucc.ie/icse2001/
scacchi.pdf. 4

Wasserman, S. & Frost, K. (1994), Social Network Analysis: Methods and Applications, New York.
18

http://firstmonday.org/issues/issue5_11/moon/index.html
http://www.R-project.org
http://www.firstmonday.org/issues/issue3_3/raymond/
http://www.firstmonday.org/issues/issue3_3/raymond/
http://opensource.ucc.ie/icse2001/scacchi.pdf
http://opensource.ucc.ie/icse2001/scacchi.pdf

