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Work as coordination and coordination as work:  
A process perspective on FLOSS development projects 

Abstract 

Coordination in work teams has been a topic of perennial interest in organizational 
studies. The starting point of much of the literature is a conceptual separation between the 
work itself, on the one hand, and activities undertaken to coordinate the work, on the other, 
labelled articulation work or coordination mechanisms. We suggest that the analytic duality 
between work and coordination arises in part from an information processing perspective on 
work that assumes an input, process and outcome model. In this perspective, it is natural to 
consider the process and coordination of the process as separate activities. However, in 
contrast, one can envision work processes as clustering around the outcome of the work. 
Each process contributes to the evolving work at hand but at the same time takes its clues for 
what to do next (i.e., input) from the evolving work product. In this case, the separation of 
discrete coordination and work events dissolves in a process perspective, for which analyzing 
interactions rather than self-standing actions is preferred. Out of this conundrum arises the 
question: how can we understand coordination as an inseparable part of work and the 
outcome of work itself?  

The paper investigates this question in the setting of free and open source software 
(FLOSS) development projects. In FLOSS projects, we find little evidence of overt 
coordination of development activities. Rather, we argue, coordination takes place primarily 
through the work itself, i.e., through the shared software source code. We present evidence 
showing how the software code posted by FLOSS developers serves as an outcome of their 
work and a coordination device at one and the same time. This approach is supported by 
socio-material nature of software code itself and by commonly adopted approaches to 
software development in the FLOSS community.  

To explain these results theoretically, we draw inspiration from the literature on 
documenting work demonstrating how documents can be both model of work and models for 
work. Extending this perspective we argue that work itself can serve not only as a model of 
work but more importantly a model for future work. Specifically, we argue that work 
outcomes, e.g., software code, can serve as a model for work by 1) invoking typified actions 
in response to recurrent situations, 2) being part of larger formalized structures of legitimate 
work activities, and being 3) visible, 4) mobile 5) and combinable. 



 

Work as coordination and coordination as work:  
A process perspective on FLOSS development projects 

Introduction 

Coordination in work teams has been a topic of perennial interest in organizational 
studies. The starting point of much of the literature on coordination of work is a conceptual 
separation between the work itself, on the one hand, and activities undertaken to coordinate 
the work, on the other. These two concepts are sometimes labeled “work” versus 
“articulation work”  (e.g., Gerson and Star 1986; Strauss 1985) or “tasks” versus 
“coordination mechanisms” (Malone and Crowston 1994). 

 

Figure 1. Contrasting an input-process-output view of work  
with a view of work as coordination.  

The duality between work and coordination arises in part from an information 
processing perspective on the work that assumes an input-process-output model of the work 
(the upper half of Figure 1, see Ilgen et al. 2005 for a review). In this perspective, it is natural 
to consider the tasks that create the output (connecting inputs to outputs) as the main part of 
the process and to conceptualize the coordination mechanisms as separate from this work. In 
contrast, one can envision work processes as clustering around the outcome of the work (the 
lower half of Figure 1). Each task contributes to the evolving work at hand and at the same 
time takes its clues for what to do next (i.e., its input) from the evolving work product, the 
output of other tasks. In this case, the separation of discrete tasks and coordination 



 

mechanisms dissolves in a process perspective, for which analyzing interactions is preferred 
to self-standing actions. The perspective also draws our attention to the importance of 
sociomaterial structures when it comes to articulating the entwined nature of work and 
coordination. Out of this conundrum arises our research question:  

How can we understand coordination as an inseparable part of work and the 
outcome of work itself? 

To address this question we investigate an empirical setting that facilitates the 
exploration of alternatives to this dual conceptualization of tasks and coordination 
mechanisms, namely free and open source software (FLOSS) development projects. 
Coordination has been a perennial topic in empirical software engineering as well and the 
same conceptual split between work and coordination of work is clear in the software 
engineering literature from Conway (1968) through Cataldo and colleagues (e.g., Cataldo and 
Herbsleb 2008).  

In this context we present a study of communication and coordination in two 
successful FLOSS projects. Our analysis has two parts. First, following the information 
processing perspective, we present an empirical study in which we searched for activities 
and, in particular, coordination mechanisms managing the work of FLOSS developers. Here, 
we define coordination mechanisms as work that manages dependencies between the tasks 
rather than contributing directly to the output of the process. However, after detailed analysis 
of data from the projects, we found little evidence of overt coordination of the development 
tasks. FLOSS developers seem to rarely communicate overtly about their coding tasks. 
Interestingly, on the occasions when they do talk, they often refer directly to the outcome of 
their work, the software code. 

In the second half of the paper we address this lacuna by developing a theoretical 
perspective on work processes that shows how coordination can take place through the 
subject of the work itself, i.e., through the shared software source code in a FLOSS team. 
Drawing inspiration from studies of documenting work we argue that work outcomes, e.g., 
software code, can serve as a model for work by 1) invoking typified actions in response to 
recurrent situations and being part of larger formalized structures of legitimate work 
activities, and being 2) visible and mobile and 3) combinable. 

The paper is structured as follow: First, we start out with a background description of 
software development tasks and coordination issues to set the stage for the following 
analysis. Second, we outline the method we used to study FLOSS work. Third, we apply an 
information processing perspective to the FLOSS cases and look for evidence of coordination 
mechanisms used. Fourth, in response to the case findings, we develop a view of work as 
coordination and apply it to the empirical cases. Finally, we discuss the findings and draw 
implications for research and practice. 



 

Background: Tasks and coordination of software development 

Because an understanding of software development is helpful background for 
understanding our data collection and analysis, we start by presenting a basic overview of the 
tasks and necessary coordination of software development work before describing the study 
and our proposed theory in more detail. Software development (in general and in the case of 
FLOSS more specifically) involves two intersecting cycles of work, one public and shared 
(for anything more than a personal project) and one private and individual, as shown in 
Figure 2. The two cycles intersect in the code base, e.g., the files containing the source code 
for the application, supporting files necessary to compile the source code into a running 
application and often some amount of documentation, e.g., instructions for compilation or a 
“README” file describing the files in the directory. A defining characteristic of FLOSS 
projects is that these source code files are made available to the general public in addition to 
the developers (hence the description “open source”).  

In larger-scale software development, these files are stored in some kind of source 
code control system (SCCS), such as CVS or Subversion. (In the discussion that follows, we 
give only a brief overview of SCCS functionality, omitting a number of details.) To start 
working on a project therefore, a developer clones the code base, meaning that s/he 
downloads a complete copy of the files from the SCCS to a local computer. The local copy of 
the source files can then be edited to fix bugs or to add new functionality. As shown on the 
left side of the figure, this local development involves cycles of design, editing the code, 
testing the application and debugging the changes (e.g., by examining program logs, traces of 
dumps). This development work is generally done in private, though a developer might 
discuss or seek help on a problem while coding.  

When the developer is satisfied with the changes, s/he “commits” the changed files, 
which means sending them to the SCCS hosting the code in the form of a “patch”, along with 
a short description of what was changed. If the developer does not have permission to change 
the files in the SCCS (i.e., does not have “commit privileges”), s/he must send the patch to a 
developer who does; that developer can then commit the changes if s/he agrees with them. 
The exact details depend on the SCCS used, e.g., some SCCS, such as git, do not require a 
central server and instead allow developers to send patches directly to each other; some can 
record commits for multiple files while others require each file to be committed separately. 

When a change is committed, the SCCS integrates the changed files into the stored 
files, along with other patches from other developers. Unless two developers have changed 
the exact same lines of code, this integration can be done automatically, though there can still 
be problems (e.g., the name of a subroutine changed in one patch, but called with the old 
name in another). The new versions of the code base is then available to all other developers 
to build on, further test or use (starting the cycle on the right of the figure). However, the 
SCCS stores a record of all changes, allowing them to be “reverted”, that is, to be returned to 



 

an earlier version, e.g., if a problem emerges in the new code. The SCCS can be configured 
to email all developers when a commit is done, making them aware of the changes. SCCS 
also support “branches”, storing different versions of the files with different sets of changes. 
Branches can be used to share experiments on the code, while keeping those experiments 
from interfering with the main release (called the “trunk”). If the experiments are successful, 
the branch code can be merged back into the trunk, though this likely will require some 
manual effort. 

Periodically, the project makes a “release”, meaning a version of the code that is 
believed to be in a consistent state is captured and packaged for distribution. The release is 
generally accompanied by “release notes” that briefly summarize the changes made since the 
last release (often simply a list of the description of the major SCCS commits included in the 
release). Depending on the intended audience, a binary version of the program may also be 
released so non-developers can use the program without having to compile it themselves. 
FLOSS projects are encouraged to “release often and early” in order to get feedback from 
users on the latest features and to more quickly find bugs in the program (Raymond 1998).  

Users and developers who find bugs in the program can report them on a bug tracking 
system. A separate tracker may record suggestions for improvements to the program or other 
issues. Trackers capture basic data about the bug or issue and allow discussion, e.g., a 
developer might post a request for further information to which the user can respond, or 
propose a possible technical solution for debate. Developers do not have to use either tracker, 
since they can simply change the code themselves to fix any bugs they find or features they 
want to add. However, some projects encourage everyone to use the trackers in order to have 
a record of the bugs found or features requested and how they were handled. Projects also 
have mailing lists on which developers and users can interact, sometimes together on one list, 
sometimes on separate lists for developers and users, though typically anyone can join and 
post to either. Ideas from the trackers or lists may inspire a developer to further work on the 
project, thus restarting the cycle of development.  

Analysis of the software development process suggests numerous possible 
dependencies that need to be managed, suggesting the need for some coordination 
mechanisms in the process. Since all of the developers work on the same codebase, there is a 
dependency between their work, requiring mechanisms for resource sharing. The code itself 
has many dependencies, as different pieces of the code are interrelated (e.g., a function that 
calls other functions or uses shared data). Changing one piece of code can affect these 
relationships (e.g., changing a function will require changing all places that call that 
function). An important dependency in most processes is between a task needing to be done 
and someone to work on it, requiring mechanisms for task assignment (e.g., a bug report 
might be assigned by a development manager to a developer to ensure that it is fixed by a 
developer, and not more than one developer).  



 

 

Figure 2. Private and public cycles of software development work.  

Method 

In this section we describe our data collection and analysis approach. The goal of this 
analysis was to describe the mechanisms adopted to coordinate the tasks in software 
development teams.  

Context: FLOSS development projects 

We set our study in the context of two free/libre open source software development 
projects. The choice of FLOSS was made for both pragmatic and conceptual reasons. 
Pragmatically, we sought an environment in which we could obtain data for our study. 
Research on FLOSS is enhanced by the availability of copious archives of project activity. 
Although it is somewhat dependent on individual projects, the bulk of such communications 
are recorded in openly available archives, both for convenience but also in part in fulfillment 
of an ideology of openness and transparency.  

Furthermore, we sought some assurance that we could obtain a complete record of the 
communications. In a conventional development team, communication for coordination 
might be carried out face-to-face in meetings, offices and corridors, and thus might not be 
recorded. Such uncollected communication would be problematic for an inquiry into the 
nature of coordination. For this reason we sought evidence from teams that operate in a 
completely distributed mode, with little or no face-to-face interaction, making it more likely 
that the repository provides a complete record of the interaction. Many FLOSS development 



 

teams have this characteristic (though not all, e.g., Crowston et al. 2007b). Those that do can 
be described as community-based, without a shared geographical center and in which 
collaboration is entirely through computer-mediated communications.  

Conceptually, FLOSS projects are an interesting setting in which to study 
coordination. The community-based FLOSS environment brings with it additional 
organizational features, such as largely volunteer participants and a lack of a formal, shared 
organizational existence. As a result, these projects face the challenges of coordinating action 
in distributed environments, with substantial numbers of volunteers, changing and fuzzy lines 
of authority and limited or no access to traditional channels for ad hoc coordination, such as 
face-to-face meetings or even telephone. FLOSS is often held as a model success for 
distributed, innovative work (Harrison 2001; Stewart and Gosain 2006), though care must be 
taken to consider how the context of FLOSS development impacts the generalizability of 
findings. 

Data collection 

For data, we drew on a data set created by Howison (2009) in his study of 
collaboration patterns in FLOSS development. That study gathered data from two 
comparable FLOSS projects, Fire and Gaim. The projects were selected for their similarity, 
rather than their differences. Both projects were relatively successful community-based 
projects without a geographical center; neither project conducted conferences or “sprints” 
and there is no reason to believe that any participants were co-located. Because both projects 
produce similar software, namely multi-protocol IM clients, we anticipated finding similar 
patterns of development and needs for coordination in the two projects. 

The primary data for the study came from direct records of the work of the developers 
as recorded in publicly available data sharing repositories for research, including 
FLOSSMole (Howison, Conklin and Crowston 2006) and the Notre Dame SRDA (Madey 
2009). For each project Howison collected 1) source code repository data, including commit 
messages; 2) release data, including release notes; 3) mailing lists; and 4) tracker discussions. 
The dataset does not include data on IRC or Instant messaging between participants, nor 
email sent between participants privately. Data was collected for two inter-release periods, 
chosen to include periods that both projects were highly active and successful and each 
around two months in length (Fire, 56 days; Gaim, 61 days). To facilitate interpretation of the 
results, this direct evidence of the developers’ actions was augmented with an informal 
interview with a developer from one project.  

Data analysis 

The goal of the analysis was to identify the work done to carry out project 
development tasks and the coordination mechanisms involved. From the available data, 
Howison reconstructed the processes leading to new program features. FLOSS teams do not 



 

always record which archived evidence pertains to which tasks undertaken by the teams (e.g., 
a code commit might not indicate which bug is being fixed). Therefore Howison manually 
inspected the archives and re-organized them to understand the tasks and the contributions 
made to them by developers. The process is time-consuming and laborious but provides 
stronger validation and understanding of the material than automated heuristics.  

The method of reconstruction was as follows (Howison 2009). Projects record the 
results of their development efforts in two main locations: the release notes and the 
README file in the source code repository. The outputs listed in these sources formed the 
basis for re-organization of the evidence, providing 60% and 30% respectively of the outputs 
identified. The remaining 10% were identified by reading SCCS commit messages to find 
commits that were not described in the README or release notes (starting with the SCCS 
messages would have been more difficult, as a single output might include multiple commits 
to different files).  

These identified outputs formed the basis for a free text search of the full data 
collection for the release period (and extending outside the release period for tracker items in 
case the bug or issue had been raised earlier). Relevant documents (e.g., bug report 
discussions, email messages or code commits) were assigned to episode to which they 
seemed to contribute. Documents could be assigned to more than one episode. The 
documents were arranged in chronological order and the individual actions for which they 
provided evidence were extracted. Individual documents could provide evidence of more 
than one action (e.g., a commit message that thanked a contributor for a patch that was being 
committed on their behalf would provide evidence for both the work of the contributor and 
the commit by the developer). Conversely, multiple documents could be merged into single 
actions (e.g., SCCS commits close together in time could be grouped as one commit of 
multiple files). The various identifiers used by participants for different archives (e.g., 
Sourceforge username vs. Real Name/Email address combination) were examined and 
merged in order to be able to attribute the work to the individual who performed it. 

The actions were then classified according to their type of contribution towards the 
task outcome, using a simple scheme: 1) production work, 2) review work, 3) supporting 
work and 4) documentation work. Production work was that work which directly produced 
changes to the shared output of the project, almost always involving changes to the source 
code in the repository. Review work was assessed when participants checked code in on 
behalf of others, or provided critique and feedback of other’s commits. Supporting work 
included both user requests and bug reports, and also developer support such as asking or 
providing help solving programming issues or explaining parts of the code to assist other 
developers. Documentation work involved creating documentation for the system.  

Through the analysis described above, Howison (2009) identified 103 work episodes 
leading to new features or changes in the code, comprising a total of 786 actions taken by 



 

developers. We took this dataset as our starting point for our analysis of the coordination of 
the projects.  

Input-process-output view of work: Case results 

In this section, we present the evidence regarding the coordination of the work 
revealed through the data collection and analysis described above. Our first step was to 
examine the number of developers who contributed to the outputs, since while there are 
likely dependencies between separate tasks, tasks in which more than one participant 
undertook production work seemed most likely to have dependencies and therefore the most 
pressing coordination requirements. Participants in such shared work are most likely to need 
to actively coordinate and to do so via communication, either in advance to plan roles or 
during work since the work is continuing.  

Howison (2009) found that only a single participant undertook production work in 83 
of 103 the cases. Only in 20 of the episodes (10 in Fire and 10 in GAIM) did more than 1 
participant perform production work (i.e., coding). In other words, only a fraction of the 
episodes are ones in which the software development activities have been accomplished 
through collaboration between two or more developers, these 20 episodes are referred to as 
co-work episodes. In this way Howison (2009) reports that despite the shared and highly 
interdependent output of the projects, much of the work appears to be done individually 
rather than collectively.  

We therefore focused our analysis of coordination on the 20 co-work episodes. We 
took these as the critical cases and examined them further for coordinating communication. 
Specifically all the actions in the episodes were examined for evidence of communication 
between the developers contributing to the task outcome. We coded the presence of direct 
communication about the tasks to accomplish, the plan of the activities or any other form of 
management of dependencies between activities within the task.  

The result of this analysis was quite surprising since it shows an absence of direct 
communication for coordination purpose in most of the episodes (14 of 20). In total, in only 6 
episodes (out of 103) was there direct evidence of visible coordination of work; the rest were 
done by two or more individuals but without explicit coordination. So, a first surprising result 
of our analysis is that even in episodes with co-work, direct communication and coordination 
is uncommon (and indeed, is rare across all of the episodes).   

Because of the small number of co-work episodes in which there was visible 
communication, we will discuss them in some detail, while noting that these examples are the 
exceptions rather than the rule. The first example of visible communication between 
developers about the next actions to perform can be found in Fire episode 32_3, in which two 
actors (gbooker and jtownsend) co-developed a new feature (AIM buddy blocking). 



 

gbooker1, who seems to drive the implementation of this specific feature, committed new 
code together with an SCCS log message that reads:  

<gbooker>  ... Once we get the notification change about the pref change for allow those not 
in buddy list, we will be good to go!! 

Four hours later, jtownsend posted new code with the message: 

<jtownsend>  add[s] notification of block non-buddies pref changing 

Analyzing the communication and then the changes in the code, it seems that gbooker’s 
statement (“Once we get the notification ...”) was in fact a polite request for a new feature 
and indicates direct communication to resolve a dependency that he saw on work he hoped or 
expected to be done by jtownsend, the completion of which would allow gbooker to drive his 
own work forward. 

Another episode which includes direct communication is Fire episode 21, in which 
gbooker emails to the user list in reply to a user’s request for information, asking for support 
from the community and then proposing a set of features to be developed. After a day, 
jtownsend replied pointing out his idea about the merging of two components and proposing 
a common plan for the subsequent activities:  

<jtownsend>  [the merging] could happen within the next two week possibly. The main issue 
is I want to add MSN file send, and improve the interface consistency with the 
Yahoo file receive, but these things should be done with the last file transfer 
infrastructure that Graham has in the branch 

Through direct communication (public email exchange in response to a user request) the 
developers are negotiating and deciding the next steps in the software development, 
explicitly laying out the dependency structure. 

In the co-work episodes for the Gaim project we found only two in which the activity 
seemed to planned or coordinated though direct communication. Task 34 is one of these 
cases: chipx86, fixing a bug in a patch released by seanegan, writes in the SCCS commit 
message: 

<seanegan>  ... We should probably remove it from configure.in (the line with 
src/protocols/icqMakefile in AC_OUTPUT()). Then we can remove it from 
here 

which in the context of the task is de facto planning for the next actions needed to complete 
the task. This slight indication about a possible next step in the software development is the 

                                    
1 Developers are identified by the user IDs (shown in italic), as on the system. Missing anaphora is provided in 

square brackets but quotations are otherwise verbatim.  



 

only direct communication related to the coordination of the activities that we have found in 
Gaim's episodes. 

More often we identified tasks in which coordination is achieved apparently without 
direct communication. An example of is Gaim episode 5, in which mallman in May found 
and reported a bug (in the “proxy string”) and proposed possible changes for addressing the 
problem. In August seanegan uploaded a patch written by eblanton that fixed the reported 
bug. There is no evidence of any direct communication between the developers about this 
task. Similarly, in Gaim episode 37, we observed apparent collaboration with no direct 
communication. In that episode darkrain, without any previous communication, posted a 
patch for fixing two bugs. After few days, and again without any intervening discussion, 
chipx86 posted a new patch that solves the same problems in a more effective way writing in 
the SCCS commit message “This looks much better”. It seems that other developers agreed 
without discussion, because after few days seanegan thanks him with the standard and brief 
sentence “chipx86 fixed it” and then closed the bug report.  

In Fire episode 30, the main activity was the development of the file transfer 
infrastructure, a task mainly realized by gbooker with the collaboration of one other 
developer. During a period of 25 days, the developers change the code 31 times (mainly bug 
fixing and file transfer implementation) without any trace of direct communication between 
them being recorded in the public archives. Suitably the description in the SCCS is very 
simple and begins with this line: “Way too much to describe here...”. 

We have also found a number of tasks in which some developer uploaded a patch and 
then in the SCCS thanks some other developer for the work. This is the case of Gaim episode 
27 in which seanegan writes:  

<seanegan>  ... Ari and Chip both sent some patches to make things work a bitter better in 
GTK 2, and Etan rewrote the notify plugin so it’s really cool no! Thanks guys! 

In this case, as above, we have no evidence of direct communication between the developers 
for performing those tasks. 

Our findings suggest that coordination of work seems to be possible even in the 
absence of direct communication among the developers. In fact, the analysis of the single 
developers’ behaviour often shows the absence of any form of direct coordination between 
the actor and the other members of the projects. This lack of evidence is surprising 
considering the availability and the transparency of FLOSS projects: it should be possible to 
find the direct, discursive communication (email, thread, forum, etc.) by which developers 
coordinate their reciprocal activities. Instead, identifying the coordination structure of 
FLOSS projects seems to be a very difficult and challenging task.  



 

To gain a better deeper understanding of these coordinative dynamics we looked 
closer at the infrastructure supporting their work. As we analyzed the interaction in the co-
work episodes, we found a further interesting result: even in the few cases where developers 
coordinate through explicit communication, they seem to refer directly to the outcome of 
their work, the codebase. In the following chat between two Fire developers the most recent 
software code version embedded in the SCCS (in this case, CVS) serves as a common work 
artifact for their coordinative communication: 

<reallyjat>  i just noticed that the readme has the wrong month on it…so i’ll fix that 
<gbooker>  :) 
<reallyjat>  i made some changes to the about box…did you notice?  
<gbooker>  Just finished downloading. Haven’t check out CVS in a while though. This is 

one long changelog.  

The central role of the codebase itself plays out in three ways in this exchange: First, 
reallyjat has checked the SCCS and noticed a (minor) issue, deciding to fix it, acting on his 
interpretation of the code itself. Second, we notice that reallyjat seems to expect that gbooker 
would be watching changes in the SCCS. In other words, developers work by making 
changes in the code and examining other’s changes in the SCCS. Third, as soon as the two 
developers start discussing, gbooker downloads the last software version and examines it so 
that both developers can refer to the code while discussing. 

Indeed, few exchanges occur without direct referral to the code, as illustrated by the 
following message: 

 <jtownsend>  Reading your description above this all sounds like a good idea. However, in 
looking at the code I’m wondering whether we should be case insensitive on 
the tags like we were before…  

In this example, jtownsend seems to agree with a developer’s proposal, but as soon as he 
examines the code he changes his mind and advocates for avoiding a specific technique that 
had made sense in explicit discussion. Decisions about a development task changes after the 
interaction between the developer and the code itself. In many situations developers rely on 
the code itself to communicate accomplished work, as seen in the following example where 
Dan Scully believes that the patch he made to the code is largely self-explanatory: 

 <Dan Scully>  I’ve attached a preliminary patch for RSS Newsfeed support…Most of the 
patch is self-explanatory, but I’ll cover the major ideas here…  

A Fire key developer we interviewed informally concurred with these findings. When 
asked what communication channel dominates coordinating development activities he 
responded: “SCCS is most important for most tasks.” However, the exchanges among the 
developers do not explicitly address how the codebase can support smooth coordination 



 

without communication in the two FLOSS projects, Fire and Gaim, which is the subject of 
our theorizing.  

On the surface these findings might suggest that FLOSS developers simply rely on 
“implicit coordination”, e.g., by sharing well-developed mental models that allow them to 
determine what needs to be done even in the absent of explicit communication and 
coordination (Crowston and Kammerer 1998; Espinosa et al. 2001; Espinosa, Lerch and 
Kraut 2004). While developers clearly have mental models of the task, it seems unlikely that 
shared mental models explain all instances of coordination. First, the FLOSS development 
process is highly complex and ever changing. It seems impossible that developers can keep 
their mental models up-to-date in the presence of the ever changing dependencies within the 
code and modifications made by numerous other developers. This is especially true in the 
sense that the participation of particular developers waxes and wanes over time. Second, 
FLOSS participants are not all experts but range from newcomers to experienced software 
engineers. We still need to explain how inexperienced participants develop mental models 
sufficient to address the coordination needs. 

In short, while we do not exclude the existence of implicit coordination, we focus 
here on the evidence presented above that the developers refer frequently to the codebase. 
This suggests that the code itself play a central role in coordination that might otherwise be 
played by implicit or direct communication for coordination. 

Theorizing work as coordination 

To explain the finding, that coordinated work seems feasible without direct 
communication, we return to the second half of Figure 1 to theorize that work is coordinated 
through the outcome of work itself. A recent line of work supports this observation by 
drawing an analogy to the biological process of stimergy, “a class of mechanisms that 
mediate animal-animal interactions” (Grasse 1959). As Heylighen writes, “A process is 
stigmergic if the work (‘ergon’ in Greek) done by one agent provides a stimulus (‘stigma’) 
that entices other agents to continue the job.” (Heylighen 2007). 

The stigmergic approach suggests that the “shared material” itself can be a 
coordination mechanism, without recourse to separate coordinative activities. Christensen 
observed this type of coordination amongst building architectures, arguing that their work is 
“partly coordinated directly through the material field of work” (Christensen 2008: p 559), 
“in addition to relying on second order coordinative efforts (at meetings, over the phone, in 
emails, in schedules, etc.), actors coordinate and integrate their cooperative efforts by acting 
directly on the physical traces of work previously accomplished by themselves or others.” 

While studies of stimergy support our general observation that work outcomes can 
coordinate future activities, the literature does not address our research question: How can we 
understand coordination as an inseparable part of work and the outcome of work itself? 



 

Stigmergy simply points out that shared materials can serve as coordination devices, but does 
not explain what specific aspects of this shared work facilitate coordination. 

To theorize what elements of work support coordination we turn to the literature on 
documenting work. As with the document you are in the process of reading, software code is 
a semiotic product recorded on a perennial substrate which is endowed with specific 
attributes intended to facilitate specific practices (Zacklad 2006: 217), thus making it a 
document. While code differs from the present document by serving two audiences, one 
being a machine, the other software developers, in the following discussion we focus on the 
properties of software code that allows developers to share their work with colleagues, read, 
understand and respond to their intentions. Thus, we argue that the software code developed 
by FLOSS participants can be regarded as documents, along with the other work products of 
the project members. 

Scholars have described how documentation and other accounts of work play a 
central role in the coordination of work  (e.g., Bowker and Star 1994; Bowker and Star 1999; 
Smith 2005; Suchman 1995; Suchman 1993). In many work contexts, documents serve as 
both the input and outcome of work, academia being a prime example. These perspectives 
have long pointed to the double role of documents as both “models of” work and “models 
for” work. Documents provide an account "of" reality by manipulating text and other 
symbolic structures so as to parallel them with reality. For example, software engineers may 
carefully document the code they have constructed to create a report of the work done. By 
expressing the code in a synoptic form that renders it apprehensible, the software engineers 
create a model “of reality”. But documents also provide an account that serves as the basis on 
which people manipulate the world. For example, engineers’ reports are not simply an 
account of work completed: the reports guide ongoing work by prescribing what is left to be 
done or enabling collaborators to coordinate their work. The reports are thus an account “for 
reality” as they provide a blueprint of the software program taking shape. Documents in this 
way offer a double accountability: when documenting the coding of a software program, 
engineers mold the account to the reality of the code on their computers and at the same time, 
mold their ongoing coding to the account.  

Now consider the possibility of a construction project without the engineer’s 
drawings. Could the building itself support such a double coordination process? If so, the 
building itself would both be the physical representation “of” the work completed and a 
manifestation “for” the work to be done. For example, a bricklayer showing up at work after 
a week on the sofa nursing lower back pain might instantly know where to place the next 
brick simply by looking at the current state of the wall under construction. The mere outcome 
of the previous week’s labour speaks volumes and thus serves as a coordination device in and 
of itself. If we accept such an approach we must delve further into what makes some work a 
model for future activities and thus a coordination device. We will make this argument in 
four steps: 1) We briefly draw on the basic tenets of a practice theory (i.e., process 



 

perspective). Drawing inspiration from the literature on documents and their double 
accountability (Brown and Duguid 1994; Buckland 2007; Frohmann 2004; Frohmann 2007; 
Harper 1998; Lund 2009; Østerlund 2008a; Østerlund and Boland 2009; Østerlund 2008b; 
Zacklad 2006) we argue that code serves as a model for work by 1) invoking specific work 
practice genres, and 2) being visible and mobile, and 3) combinable. 

Documents and the practice of software development 

To work is to engage in practice, an ongoing historical process in which people’s 
doings are caught up and responsive to what others are doing. Taking inspiration from Smith 
(2005) and Bakhtin (1986), we suggest that a work input is rarely completely original; it is 
always an answer (i.e., a response) to work that precedes it, and is therefore always 
conditioned by, and in turn qualifies, the prior activities. What the engineer or bricklayer 
does when facing somebody’s work is responsive and partially determined by what has been 
going on up till now. Every next act picks up on what has been done and projects it forward 
into the future. By doing so they are reproducing the structures already established by prior 
work products and at the same time producing something new by adding to the work product. 
To put it differently, work is a socio-material configuration under whose guidance new 
relations and activities are organized. They give meaning and objective form to a socio-
material reality both by shaping themselves to it and by shaping it to themselves (Orlikowski 
and Scott 2008).  

Turning to software development, we note that the codebase is part of a practice; a 
code contribution is like a turn in a conversation. It addresses earlier contributions but at the 
same time points towards a response. When a coder post a new code to the SCCS the code is 
always conditioned by, and in turn qualifies, the prior activities to a greater or less degree. It 
picks up on what has been done and projects it forward into the future. The new code thus 
works as both a model of work done and more importantly a model for future work. It stands 
as a question posted in a conversation waiting to be answered. 

Three further concepts from document studies stand out as helpful in articulating how 
work can service as a model for work: genre, visibility and mobility and combinability. We 
will address these in turn.  

Document and code genre 

People can recognize a document as a model for some action because they have some 
background knowledge about the genre of that document, and thus the expectations 
associated with that type of communication. A genre is defined as typified action invoked in 
response to a recurrent situation (Yates and Orlikowski 1992). People engage genres to 
accomplish social actions in particular situations, characterized by a particular purpose, 
content, form, time, place, and set of participants. The same can be said about work. The 
engineer and the bricklayer engage in typified actions invoked in response to recurrent 



 

situations. They do so to accomplish something characterized by a particular purpose, 
material form, place, time and participants. By completing a drawing and leaving it for a 
colleague to work on, the engineer invoke a specific genre of work. The colleague will be 
able to pick up and work with the drawing because it invokes a specific genre of work that 
comes with certain expectations. The first engineer might have created a scaffold of a 
drawing that simply outlines a structure. In so doing, his work product becomes a model for 
work associated with specific elements and course of action. It might invoke a sequence of 
steps or routes to a conclusion. It might invoke certain categories or socio-material 
arrangements that will have to be used. The bricklayer takes his cues from work completed. 
If his colleague started out with red bricks he is not likely to randomly switch to yellow ones 
and thus break a pattern embedded in earlier work. In this way, a piece of completed work 
serves as a model for future work by hinting at its own genre, i.e., what are the expected 
outcomes, what materials and forms should be invoked at what places and times and by what 
types of participants.  

Furthermore, documents related to work are often organized into what are called 
genre systems (Orlikowski and Yates 1994), formalized sequences of documents of particular 
genres providing more or less standardized methods for analyzing, recognizing what might 
be done and what gets done as legitimate work activities. For example, the process of 
publishing a journal paper involves a sequence of documents of specified genres: submission, 
review, editor’s report, decision letter, revision, acceptance letter, final submission, galley 
proof, copyright release and published paper. Some of these sequences are built into the 
structure of completed work. As a scaffold, a piece of work might start out as an incomplete 
frame on which other parts get added in some organized sequence.  

For genres and genre systems to enable documents to function as models for work 
they must be part of the conventions of practice shared among members of particular 
communities. They are learned as part of membership of such communities where new 
participants gradually acquire a naturalized familiarity with the socio-material arrangements 
and prominent genres as they become members. 

The code in FLOSS work provides genre expectations and thus serves as “models 
for” work at two levels. First, the FLOSS development process includes a number of distinct 
and typified actions involved in response to a recurrent situation and expressed in a set of 
characteristic documents. As summarized in Figure 2, these documents include source code, 
bug reports and commit messages.  Each of these documents is associated with particular 
purposes, forms, content, times, places and participants for the related activities. For 
example, the purpose of the code is to instruct the machine to perform specific applications 
whereas bug reports are used to send information to developers about observed problems 
with the program. Code is used nearly exclusively by developers, while bug reports are 
shared between users and developers. By looking at any of these work outputs experienced 
FLOSS participants can tell what sort of activities are called for.  



 

Second, the source code itself has a structure in which each component has more-or-
less well-defined purposes associated with particular functionalities. There is a genre of 
source code, as the code collectively has the purpose of providing instructions for the 
computer, but in a sense, each module of a typical program has its own particular purpose 
and so its own subgenre. For example, some modules may manage the interface, while others 
deal with interactions among particular data sources. In a well-structured program, the 
purpose of each module is clear — the subgenre is recognizable — and so the code is 
useable. We note further that this communicative purpose is of critical importance for other 
developers. For example, if a developer wanted to add additional interface functionality, it 
should be clear which components are appropriate to modify. The general structure of the 
source code thus serves as a model for what should or could come next. In poorly-structured 
code, the purpose of particular module may be hard to determine or, in fact, muddled and 
unclear. This confusion may not directly affect the functionality of the program, but in these 
cases, the code does not constitute a genre, which means that it does not provide pointers for 
where new functionality should go. It does not serve as a ‘model for’ work. Future 
programmers cannot tell where to add new functionality because the current work outcomes 
don’t make it clear how to add it without negatively interfering with existing functionality. 
Developers reflecting on FLOSS argue that developing the right program structure, one that 
communicates well to other developers, is a key to the success of a FLOSS project. A recent 
book entitled “The Architecture of Open Source” collects narratives of architectural purpose 
across well-known open source projects; its introduction claims, “If you are a junior 
developer, and want to learn how your more experienced colleagues think, this book is the 
place to start” (Brown and Wilson 2011).   

FLOSS development further provides expectations about sequential ordering of 
documents with genres at two levels. First, the broad genres as summarized in Figure 2 are 
clearly arranged in an organized manner where one activity typically follows another. For 
instance, a developer would first read a bug report, then change the code and commit with a 
SCCS commit message. Releases have their own sequence of documents, such as release 
note, packaged software, binary distributions and so on. In other words, the FLOSS 
infrastructure supports certain sequences of documents that suggest particular sequences of 
processes that participants learn as part of membership in the group.  

Second, the source code itself develops from a structure much like the outline of an 
article. Developers build a scaffold which is gradually filled out. Later new functionality can 
be added to the existing structure and so forth. The SCCS records the full revision history, 
which include all changes that are made to each file in the system including what files are 
created or deleted by whom, when. Many changes include short notes that can explain why a 
change was made (although many changes do not include such explicit notes, apparently 
expecting the reader to examine the code directly). Such histories not only serve as ‘models 
of’ work but can point forward by depicting the generally accepted work process. For a 



 

newcomer, such histories provide a window to how things are done, what activities tend to 
follow what activities and what is regarded as good and opposed to bad (i.e., reverted) work. 

Visibility and mobility 

Second, in order for a piece of work to serve as a model for future actions it must be 
visible and accessible to others. Obvious as it may seem, making work visible is not a 
straightforward process. As discussed by Suchman (1995), some work may be more visible 
than other work; some work may cover up previous activities and render them invisible. For 
example, service work in notoriously hard to make visible: the better the work is done, the 
less visible it is to those who benefit from it. Understanding what elements of work are 
accessible and how its visibility may change over time is central to understand how work 
may and may not service as a model for future activities. Similarly, for work to coordinate 
activities beyond a physically restricted space, it must become mobile (Latour 1990), 
meaning that it is conveyed to a context in which others can encounter it. The bricklayer 
cannot take cues from work done by a colleague if he cannot go to the site or bring it to 
himself.  

Most obviously, the FLOSS development infrastructure supports the mobility of the 
code by being web-based. Any user can download the source code from the SCCS and have 
access to others work as a basis on which they can build their own. As a result, software 
engineers can in many situations use others’ work as a model for their own activities because 
of their ubiquitous access to the server containing the code. Further many projects employ a 
push mechanism by which other’s changes are made available locally in other developers 
workspaces, usually by email or RSS, rather than waiting for others to seek them out 
(“commit list”). By being in multiple places, code can co-ordinate work in multiple settings. 
In addition, some FLOSS projects make use of branches to provide sandboxes where 
developers can play with code without “breaking the trunk”. These branches are public, 
allowing other participants to follow the progress of a developer’s experimentation, and thus 
make it a potential “model for” their own work. 

The infrastructures that have been developed over the past decades further support the 
mobility of the software development documents by supporting a smooth exchange between 
the public and private work on the source code depicted in Figure 2. For example, projects 
can choose between multiple SCCS such as CVS, Subversion or git, each with particular 
strengths and process affordances. Other packages support other parts of the process, 
including bug and issue trackers such as Bugzilla, email managers such as Mailman, 
documentation generators and so on. These packages can be easily accessed on “forges”, 
such as SourceForge, that provide a range of services for hosting FLOSS projects. As a 
result, a technical infrastructure for a project can be created, or re-created locally, in a matter 
of minutes, thus supporting the smooth mobility of the code and exchange of work.  



 

Visibility of FLOSS development work is promoted as well through cultural norms 
about development. A widely acknowledged culture norm in open source is to “check in 
early, and check in often.”  In other words, if people do not share their work often they are 
not making it visible to other participants to build on. Much like a brick wall developers can 
see the code base grow and take shape, calling for the next piece of code to be added. 
Contrariwise, a large infrequent commit increases the chance that there will be conflicts and 
makes it harder for other developers to understand what the change does, again hampering 
visibility. Indeed, a frequent complaint heard about a contribution to a project is that it is too 
large for developers to understand.   

Combinability 

Finally, for work to be a model for future work it must be combinable and improvable 
in modular increments (Howison 2010; Howison and Crowston 2011; Latour 1990). If a 
piece of work is done all at once or globally there is nothing left to do, hence Raymond’s 
surprising injunction to “leave low hanging fruit” (Raymond 1998). However, most work 
tasks and not least those associated with software engineering are layered and complex. It 
takes time to build and new work contributions can be adjusted and added to existing 
outcomes.  

Combinability in FLOSS development is supported both by the SCCS infrastructure 
and cultural norms. First, there are strong cultural norms for providing “atomic commits”, 
that is, developers are encouraged to address only one change or topic when committing new 
code, leading to many smaller commits (Arafat and Riehle 2009). It is easier to combine code 
with a focused commit than with a commit that does multiple things and touches bits and 
pieces of dozens of files in the process. Other developers can better see what the new code 
has been combined and with what consequences. It is likewise easier to revert a focused 
commit if things should go wrong. Developers are also warned: “Don’t Break the Trunk”, 
which means that the main set of files in the SCCS should always compile and run. This 
practice ensures that any developer who downloads the code will be able to work with it, 
supporting the individual development described above.  

Finally, combinability is supported by the SCCS infrastructure by allowing 
participants to try out experiments on the code in a branch before committing it to the trunk, 
i.e., the released system. They can execute and test ideas at any time without interfering with 
others. This way the developers can run the software with their proposed changes and obtain 
direct feedback about the combinability and thus success or failure of the current version of 
the artefact. This allows them to iteratively to enhance their understanding of the task and 
modify their strategy for managing dependencies between the existing system and what they 
are trying to accomplish. In this way, developers can interact with the code base as they 
would engage in a conversation by continuously receiving feedback on their output. This 



 

means that developers can avoid a lot of communication with co-developers, since their 
active engagement with the artifact provides substantial insights; one has less need to ask 
another what their intentions were when one can experiment with the codebase. 

Discussion 

We conclude by discussing our findings and drawing implications for research and 
practice. We started this paper by suggesting two models of work: an input-process-output 
view of a process, in which work and coordination are conceptually separate, and a view of 
work as coordination, in which work clusters around the work product without a clear 
division between the two. We then presented a study of two FLOSS projects in which we 
sought evidence of separate coordination mechanisms as suggested by the first perspective. 
However, this study revealed surprisingly limited explicit coordination of the process. 
Instead, most work was done by a single individual, and even when multiple individuals 
contributed, it was mostly without the need for explicit coordination.  

Based on the second perspective, we interpret this evidence as showing how the 
various documents of FLOSS development, and especially the shared source code, serves as 
a product of the work and a venue for coordination at one and the same time, which is related 
to stigmergic coordination. Our particular contribution is clarifying the characteristics that 
work must have in order to be useful in supporting stigmergic coordination. Specifically, we 
argue that the code itself can serve not only as a model of work but more importantly a model 
for future work by 1) invoking typified actions in response to recurrent situations, as part of 
formalized structures of legitimate work activities (i.e., by having a genre), and by being 2) 
visible and mobile, and 3) combinable. 

In summary then, we understand coordination as a part of work by understanding the 
work as a socio-material system composed of practices and technologies that support 
coordination even without direct communication. The social and the material play a role 
separately and together. The cultural practices of FLOSS projects eliminate the need for 
some kinds of coordination. For example, an important dependency in most processes is 
between a task needing to be done and someone to work on it, requiring mechanisms for task 
assignment. However, in community-based FLOSS projects, developers typically decide for 
themselves what tasks to undertake (Crowston et al. 2007a), thus avoiding the need for 
explicit assignment.  

Conversely, the discussion of the development process makes it clear that the material 
features of the SCCS are important in replacing or avoiding the need to coordinate work 
through explicit communication. For example, since all of the developers work on the same 
codebase, there is a dependency between their work. Such a situation would normally require 
explicit mechanisms for resource sharing, but because developers can work on personal 
copies of the source code files, they can work without the possibility of interfering with other 



 

developers. The SCCS mostly (though not completely) automates the process of integrating 
these separately-made changes at a point when the work is ready to share.  

These approaches to coordination are a combination of social and material. Self-
assignment of work is facilitated by the use of technical systems such a bug report or issue 
trackers that keep track of what work is needed. The technology of the SCCS can only 
combine work that does not conflict so to facilitate the use of these systems, developers have 
adopted practice to commit work more frequently in smaller chunks that are easier to 
integrate technically as well as for other developers to understand. They are also careful to 
maintain the source code in working order so that others can work with the current version, 
or to keep experiments in separate branches of the code. Keeping the code well-structured 
with understandable changes makes it easier for developers to manage the interrelationships 
within the code.  

This understanding of work as coordination has implications for system design, 
speaking to the notion of modularity as coordination through information hiding (e.g., 
Baldwin and Clark 2000; Parnas, Clements and Weiss 1981). If one of the functions of the 
repository is dynamic understanding for dynamic collaboration as requirements change, then 
enforcing strict information hiding through access controls in the source code repository 
seems likely to be counter-productive, removing the ability of programmers to track the 
evolution of each other’s work and mutually adjust to it.  Information overload is reduced if 
the repository and its history are available for inspection when the programmer wants, as 
opposed to only through discursive communications that lose their context over time. 

Our analysis of coordination as supported by the socio-material system of FLOSS 
development also suggests limits on the generalizability of the model and thus the possible 
adaptation of FLOSS work practices. Specifically, to the extent that the cultural practices or 
technologies are unique to FLOSS, the general applicability of these mechanisms will be 
restricted. For example, the technological infrastructure available may be insufficient to 
combine individual contributions or to allow separated workers to independently access or 
understand the purpose of different pieces of the product. However, such restrictions are 
relaxing quickly. For example, Google Docs, which we used in writing this paper, provides a 
way to share the output and process of writing a document among a distributed group, 
apparently providing the technological support for a much broader range of knowledge work. 
Still, managers may not be content to allow team members to pick their own work, that is, 
self-assignment may not seem to be a viable alternative to explicit coordination. Indeed, in 
writing this paper, the pressure of the deadline made it problematic to assume that all sections 
of the paper would eventually get written without some discussion of who would do what. 
Open source projects often do not face such deadlines and so developers can often afford to 
wait and see what others do before making their contributions.  



 

These issues point to the need for further research with this framework: under what 
conditions is it sufficient for coordination of a work process for the documents that comprise 
the shared output to be generic, visible and combinable and under what conditions is explicit 
communication needed? If both are feasible, what are the tradeoffs in the quality or 
efficiency of these approaches? Can all work be coordinated this way with a sufficient 
infrastructure or are there features of work that always require explicit coordination? For 
example, returning to our experience with Google Docs, we found that we needed discussion 
to clarify the task we were trying to accomplish (a kind of coordination problem). But it may 
simply be that Google Docs is not yet the right tool for such tasks. These problems suggest 
several fruitful lines for further research.  
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