Documentation and Access to Knowledge in Online
Communities: Know Your Audience and Write

Appropriately?

Carsten Osterlund

Syracuse University, School of Information Studies, Hinds Hall, Syracuse, NY 13244-4100.

E-mail: costerlu@syr.edu

Kevin Crowston

Syracuse University, School of Information Studies, Hinds Hall, Syracuse, NY 13244-4100.

E-mail: crowston@syr.edu

Virtual collaborations bring together people who must work
together despite having varied access to and understand-
ing of the work at hand. In many cases, the collaborations
are technology supported, meaning that the work is done
through shared documents. We develop a framework artic-
ulating the characteristics of documents supporting collab-
orators with access to asymmetric knowledge versus
those with access to symmetric knowledge. Drawing on
theories about document genre, boundary objects, and
provenance, we hypothesize that documents supporting
asymmetric collaborators are likely to articulate or pre-
scribe their own (a) purpose, (b) context of use, (c) content
and form, and (d) provenance in greater detail than docu-
ments supporting symmetric collaborators. We explore
these hypotheses through content analysis of documents
and instructions for documents from a variety of free/libre
open-source projects (FLOSS). We present findings con-
sistent with the hypotheses developed as well as results
extending beyond our theory-derived assumptions. When
participants have access to the same knowledge, the study
suggests that prescriptions about the content of docu-
ments become less important compared with prescriptions
about the context, provenance, and process of work. The
study contributes with a dynamic perspective on communi-
cative practices that consider an often-uneven distribution
of knowledge in virtual collaborations.

Received March 12, 2017; revised September 5, 2018; accepted October
2,2018

© 2019 The Authors. Journal of the Association for Information Science
and Technology published by Wiley Periodicals, Inc. on behalf of
ASIS&T. * Published online Month 00, 2018 in Wiley Online Library
(wileyonlinelibrary.com). DOI: 10.1002/asi.24152

This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited,
the use is non-commercial and no modifications or adaptations are made.

Introduction

The information-technology revolution has led to the
proliferation of virtual collaborations both within and across
organizations. For many virtual collaborators, documents
constitute the primary means for knowledge sharing and
exchange. Research has suggested the importance of mutual
knowledge (Cramton, 2001), shared mental models (Cannon-
Bowers & Salas, 1993), or common ground (Clark &
Brennan, 1991) as a basis for communication and collabora-
tion. Yet community members often bring divergent under-
standings and knowledge from non-converging frames of
reference to the production and use of documents, potentially
hampering communication. For example, a novice program-
mer with no history in a particular project may get some
sense of the work completed from a report written by a soft-
ware engineer on the project. However, without knowledge
of the individual and organizational practices that went into
creating the code and the report, the novice may be unable to
determine how to contribute to the project. In contrast, an
expert engineer with experience on similar projects may sim-
ply need a few key words to guide his or her future work.
One document does not fit both audiences. How then can
researchers and practitioners best understand and support
such heterogeneous virtual collaborations in environments
with thousands of users, some deeply involved, many only
peripherally so?

In such situations, one is often advised to, “know your
audience and write appropriately.” But (a) Who is the audi-
ence? and (b) How does one write appropriately? In this
article we conceptualize different answers to the first ques-
tion by studying two types of relations among writers and
their audience: relations characterized by access to sym-
metric knowledge versus access to asymmetric knowledge.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 00(0):1-15, 2019

mailto:costerlu@syr.edu
mailto:crowston@syr.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

By symmetric and asymmetric we mean simply that writers
and readers may have access to the same (symmetric) or
different (asymmetric) knowledge and assumptions about a
context. This comparison allows us to explore the second
question by examining what aspects of documents can be
tailored based on audiences’ different knowledge and what
strategies online collaborators can apply to “write appropri-
ately” to these different audiences. Specifically, we address
the following broad research question:

What features are expected of documents that link peo-
ple with access to asymmetric knowledge compared with
documents used among people with access to symmetric
knowledge?

Answering this question is important for understanding
the nature of document use in virtual collaborations and
for ensuring the utility of such collaborations, especially as
they grow and include participants that are more diverse.
Theoretically and empirically, the research contributes to
the growing literatures concerned with the interaction of
documents, boundary objects, and provenance (Trace, 2016;
Huvila, 2011, 2016; Levy, 2016; Shankar et al., 2016;
Trace, 2016).

Theory Elaboration and Hypotheses

The study builds on three bodies of theory that describe
documents and how they might span groups: genre theory,
work on boundary objects, and studies of provenance.
These theories were chosen because they address the rela-
tion between users’ stocks of knowledge and how they use
documents. The first perspective focuses on the common
knowledge people bring to document production and use
(particularly applicable to the case of what we refer to as
symmetric knowledge). The second addresses how arti-
facts, such as documents, can bridge people with few
shared points of reference (what we refer to as asymmetric
knowledge). The third speaks to how people preserve the
history and genealogy of documents to alleviate a lack of
shared reference points and knowledge (characteristics of
asymmetric knowledge). In short, each perspective focuses
on different positions on the continuum from people hav-
ing a shared understanding of documentation (symmetric
knowledge) to groups with few common references (asym-
metric knowledge). By combining the three perspectives,
we develop a dynamic approach to communicative prac-
tices that allows us to investigate how communities adopt
different strategies to “write appropriately” for different
constituencies.

Genre Theory

Document genre has been defined as typified communi-
cative action invoked in response to a recurrent situation
(Bazerman, 1995; Crowston & Kwasnik, 2003; Orli-
kowski & Yates, 1994). People engage genres to accom-
plish social actions in particular situations characterized by
a particular purpose, content, and form, with participants in

specific times and places. Identification of documents’ gen-
res makes them easier to recognize and understand, reducing
the effort required to convey meaning. For genres to aid in
communication, though, they must be shared by potential
collaborators (Swales, 1990). Thus, a genre’s utility depends
on access to symmetric knowledge among members of a
community. When it comes to writing reviews of journal
submissions, for instance, senior scholars familiar with the
review genre of their field are likely to know the expecta-
tions. Conversely, new graduate students who do not share
that community’s background are unlikely to know the
genre and, in turn, bring few, if any, expectations about what
purpose, content, and form a document in that genre is likely
to convey. We argue that to facilitate communication among
people with access to asymmetric knowledge, there will be
explicit statements about the genre, namely, a document’s
expected purpose, form, content, appropriate participants,
and time and place of the communication.

Boundary Objects Theory

To further understand the facilitation of communication,
we turn to Star and Bowker’s work on boundary objects
(Bowker & Star, 1999; Star, 1989). People from different
communities, with few shared points of reference and little
common knowledge (i.e., asymmetric knowledge), must
manage the tension between their divergent viewpoints.
Star and Bowker introduce the concept of a boundary
object to explain how such heterogeneous communities
maintain productive communication. Accordingly, we posit
that documents shared among people with access to asym-
metric knowledge may serve as boundary objects. Star
describes four types of boundary objects. The first type,
repositories (collections of documents) is not applicable for
our discussion of individual documents, but the remaining
three types offer some helpful ideas.

Star defines coincidence boundaries as common objects
that have the same boundaries but different internal con-
tent. In her work, these boundaries become relevant when
work is distributed over a large-scale geographic area. Star
points to the state of California as a coincidence boundary
for the collaboration among citizen scientists and profes-
sional biologists at UC Berkeley. Work occurs in different
sites and with different perspectives and can be conducted
autonomously, whereas cooperating parties share a com-
mon spatial referent. Extending Star’s thinking, we suggest
that shared documents can specify commonly recognized
temporal or participatory boundaries that similarly situate
different uses of the document. Extending the publishing
example, the editorial and production staff of a journal can
agree on an “article” as a bounded unit of work, even
while having different interests in and perspectives on what
an article contains (a scholarly contribution on the one
hand and a chunk of publishable text on the other).

Ideal types are documents such as diagrams, atlases, or
other descriptions that provide an exemplary instance of a
document without precisely describing the details of any

2 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019

DOI: 10.1002/asi

particular locality, thing, or activity. It is this quality that
makes them useful to people with different points of refer-
ence and stocks of knowledge. Such documents demarcate
general elements, processes, or organization of the shared
context while suppressing distracting or conflicting details.
Because their purpose is to span differences in perspective,
people with access to symmetric knowledge should not
need to use ideal type documents. Contrariwise, people
who share little common knowledge and exist at the
periphery of the community may find them useful for navi-
gation and orientation. For instance, a scholar might give
junior graduate students ideal examples of reviews to guide
them when writing their first reviews.

Finally, the fourth type of boundary object, standard-
ized forms, offers a uniform way to index communicative
content and form. A basic structure for the document’s
content and form is articulated and is key to the docu-
ment’s genre and particular communicative relationship.
Accordingly, people with intimate knowledge of the work
at hand have less need for standardized forms. They know
what needs to be done and what information will be rele-
vant. Contrariwise, novice review writers might find help-
ful a review outline that specifies the required elements.
Indeed, some journals build such standardized forms into
the review system interface.

Documents, standardized forms in particular, often draw on
classification schemes to structure the document’s content and
form, using regularized semantics and objects. Two issues are
important when understanding classification systems designed
for heterogeneous groups: comparability and visibility. Com-
parability means being able to connect instances even when
classified differently. Visibility refers to how the classification
system exposes or suppresses various features.

People with access to symmetric knowledge have differ-
ent requirements for comparability and visibility from peo-
ple with access to asymmetric knowledge. If people
intimately know the situation and its practices, little stan-
dardization is needed to compare the content of different
documents. In contrast, facilitating comparison across less-
known settings require regularity in semantics and objects.
For instance, journal abstracts often follow a certain format
(a “structured abstract”), which helps readers make com-
parisons to related studies.

The same dynamic plays out for visibility. When creat-
ing documents to support work activities, one must differ-
entiate areas of work that are invisible and visible.
Invisibility can be regarded as acknowledgment that some
information is unimportant. Some work just gets done
without needing documentation. Invisibility can also stem
from intimacy: A group that has worked together for a long
time may no longer need to describe certain activities. But
for people at some distance, the document would require
more detailed description and an associated classification
scheme. For instance, journal article method sections strike
a fine balance in how visible to make the activities under-
taken by the researchers. More detail would help novice
readers; too much might annoy seasoned scholars.

Power plays an intimate role when it comes to a docu-
ment’s comparability and visibility requirements (Bowker &
Star, 1999; Shankar et al., 2016). A dissertation advisor try-
ing to keep abreast with a doctoral student’s progress will
likely require the student to follow a specific format and
include certain content to facilitate comparability and visibil-
ity of the student’s work. By emphasizing some formats and
content over others, the advisor can steer the student to pay
attention to some research activities over others.

Based on these two theories of genre and boundary
objects, then, we posit three hypotheses:

Hypothesis 1. A document shared among people with
access to asymmetric knowledge is more likely to require
an explicit statement of purpose than one shared among
people with access to symmetric knowledge.

Hypothesis 2. A document shared among people with
access to asymmetric knowledge is more likely to require
an explicit statement of the expected context of use:

* by specifying the appropriate participants, times, and places of
its production and use,

* through presentation of ideal types that demarcate the specific
elements or organization of the shared work, and

* by demarcations of the boundaries of the shared work. These
boundaries can be geographical but can also be defined by the
scope of the work required by the project and the specific
document.

Hypothesis 3. A document shared among people with
access to asymmetric knowledge is more likely to require
an explicit statement of the form and content of its commu-
nication by:

* bringing regularity in semantics and objects covered by one
document to the next, and

* requiring the users to make more details of their work visible in
their descriptions.

Provenance Theory

The final theoretical perspective we draw on is prove-
nance theory from archival studies (Gilliland-Swetland,
2005; Ram & Liu, 2012). Historical documents offer an
extreme case of a highly asymmetric relationship between
what a document provides and the users’ knowledge.
Accordingly, archivists have long been concerned with pre-
serving background needed to contextualize the use and mean-
ing of historical documents. In particular, archivists record
(a) the origin or source of a document and (b) information
regarding the origins, custody, and ownership of an item or
collection.

People with deep knowledge of a community, for
instance, a principal investigator (PI) on a research project,
may simply need to know the author, title, and date to

! Definition from http://www?2.archivists.org/glossary/terms/p/provenance

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019 3

DOI: 10.1002/asi

http://www2.archivists.org/glossary/terms/p/provenance

position a document in its historical context and the pro-
ject’s evolution. By contrast, a new team member who has
yet to become acquainted with the community will require
additional details of a document’s history to understand its
fit in the larger work process. Therefore, we suggest that
documents used in settings with asymmetric knowledge
require more details about the provenance of their commu-
nication and will explicitly state their history to allow bet-
ter contextualization of a documents’ use. This leads us to
our final hypothesis:

Hypothesis 4. A document shared among people with
access to asymmetric knowledge is more likely to require
an explicit statement of the provenance of the communica-
tion by referring to:

* the origins of the communication, and
* the genealogy of the communication’s use and its ideas.

Design of the Research

To test our hypotheses and characterize documents link-
ing people with various degrees of access to symmetric or
asymmetric knowledge, we chose a structured content-
analytic methodology comparing what is required of docu-
ments in different collaborative situations. To determine
the normative expectations for documents, we examined
both a sample of documents and a sample of instructions
for creating those kinds of documents. In doing so, we
have drawn on the traditions of many genres, boundary
objects, and provenance studies that use content analysis,
building on an interpretive foundation, as a main methodo-
logical approach (Orlikowski, Yates, Okamua, & Fujimoto,
1995; Star, 1989). In general, boundary-object and genre
studies approach documents as instantiations of unfolding
communication practices. Likewise, current provenance
studies in computer science tend to track work practices as
content flow between applications and people (Lonsdale,
Jensen, Wynn, & Dedual, 2010). Although agreeing with
the importance of these approaches and their epistemologi-
cal stand, in this study we strive to generate a panoramic
view where we compare documents across settings with
different degrees of access to asymmetric or symmetric
knowledge.

Setting

To test the hypotheses developed above, we chose to
study documents used in Free/Libre Open Source Software
(FLOSS) development projects, a setting in which we
could observe documents being used by people with differ-
ent kinds and levels of shared knowledge. Key to our inter-
est is that most FLOSS projects are developed by primarily
virtual teams comprising professionals and users (von Hip-
pel, 2001; von Hippel & von Krogh, 2003) that coordinate
their activity primarily through computer-mediated com-
munication tools (Raymond, 1998; Wayner, 2000). As

~— Passive Users
Active Users
Co-Developers
Core Developers

Commit Messages
Patches

Bug Reports

FIG. 1. FLOSS projects’ onion structure, showing groups of participants
and how documents of different genres span these groups. [Color figure
can be viewed at wileyonlinelibrary.com]

development proceeds, evidence of the processes and inter-
actions between tasks and participants is left in repositories
of documents characterized by genre, such as email lists,
issue trackers, and source code management systems.

A particular interest is how document use depends on
the relationships among FLOSS team members. Several
authors have described successful FLOSS teams as having
an onion-like structure (Cox, 1998; Gacek & Arief, 2004;
Moon & Sproull, 2000; Rossi, 2004). At the center are
core developers (see Figure 1), who contribute most of the
code and oversee the design and evolution of the project
(Moon & Sproull, 2000). They are the only participants
with the right to add source code to the shared code reposi-
tory. Scozzi, Crowston, Eseryel, and Li (2008) reported
that core developers had shared mental models about the
project and the development process. We therefore suggest
that the small group of core developers will share a high
level of background knowledge about programming in
general, and about the project in particular.

Surrounding the core are about an order of magnitude
more codevelopers (Crowston, Wei, Li, & Howison, 2006).
These individuals contribute sporadically by reviewing or
modifying code or by contributing bug fixes. They have a
much lower level of interaction with the project (Crowston
et al., 2006; Mockus, Fielding, & Herbsleb, 2002). We sug-
gest that they thus share less background knowledge than
the core developers do about the project specifically. Never-
theless, to be able to make code contributions they must at
least share some knowledge of programming practices.

Surrounding the developers are the active users: indi-
viduals who use the latest releases and contribute bug
reports or feature requests (but not code). Because they are
not involved in development, we suggest that active users
share even less knowledge with developers. A few may be
proficient developers, but many others may not be pro-
grammers at all. Steinmacher, Graciotto Silva, Gerosa, and
Redmiles (2015) identified “previous knowledge” as a major
category of hurdles for a newcomer to an open-source

4 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019

DOI: 10.1002/asi

http://wileyonlinelibrary.com

Bug 45287 - build failure b of diffi b

Status: NEEDINFO

Alias: None

Product: Apache httpd-2
Component: Build (show other bugs)
Version: 2.5-HEAD
Hardware: PC FreeBSD

Importance: P4 minor (vote)

Target Milestone: ---
Assignee: Apache HTTPD Bugs Mailing List

Depends on:
Blocks:

BSD and GNU make

Reported: 2008-06-26 06:04 UTC by Takashi Sato
Modified: 2009-01-18 16:19 UTC (History)
CC List: 1 user (show)

Attachments

Add an attachment (proposed patch, testcase, etc.)

FIG. 2. Example of a bug report. The Apache httpd project (from https://issues.apache.org/bugzilla/show_bug.cgi?id=45287). [Color figure can be viewed

at wileyonlinelibrary.com]

Changeset 9506b88b3 in mythtv

Timestamp: 10/09/17 17:15:48 (6 days ago)
Author: David Hampton <mythtv@...>
Branches: master
Children: 9e3db8cd46
Parents: 594b16057 (diff), 6ee77bc064 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
git-author: David Hampton <mythtv@...> (10/09/17 17:15:48)
git- David Hampton <mythtv@...> (10/09/17 17:15:48)
committer:
Cleanup gcc and clang warnings generated by -Wextra switch.

Message:
This commit fixes a large majority of the warnings generated by using
the -Wextra switch to gcc and clang. It does not fix any warning
related to objects that use QObject as their base class. Enabling the
-Wextra flag by default will occur in a later commit.

Trac: fixes #12096
Github: fixes #4134

FIG. 3. Example source code control system check in message.
The MythTV project (from https://code.mythtv.org/trac/changeset/
9506b88b3bc2c3717b32102ece45794fa71£791b/mythtv). [Color fig-
ure can be viewed at wileyonlinelibrary.com]

project (that is, for an active user to become a codeveloper).
Users’ interaction with developers is often channeled
through a constrained set of genres; they must present ques-
tions and bug reports in the “right way” (Raymond & Moen,
2006) to ensure that the reports communicate information
needed for the developers to take action.

Sample

FLOSS projects create a variety of documents. To
emphasize our initial theoretical comparison, we chose
three kinds of documents whose audiences share knowledge
of different degrees of asymmetry or symmetry, specifically
bug reports, source code patches, and source code commit
messages (see Figure 1). These genres of documents are
found in all FLOSS projects, as they are central to the pro-
cesses of creating and maintaining source code by a distrib-
uted group to be used by others.

Bug reports (see Figure 2) are used to report problems
with a system. Created by both end users and developers,
they are intended for developers because only developers

can actually fix bugs. Bug reports can include discussions
between users and developers, if, for example, developers
request more information about the bug. Thus, bug reports
often span two distinct communities (users and developers)
who we hypothesize have access to asymmetric knowl-
edge. Projects often maintain a bug reporting system and
provide instructions about how and when to report a bug.

The second pair of document types, the source code patch
and associated source code commit message, are tightly linked
genres. FLOSS projects grow through incremental develop-
ment, as various developers contribute code to fix bugs or
implement new features (Howison & Crowston, 2014). These
additions to the code are shared with other developers in the
project through patch files, machine-readable files that record
the changes made by the developers to move from one ver-
sion of the source code to another. Patch files can be applied
to source code files maintained by other developers even if
those developers have made some changes of their own, as
long as the changes do not directly conflict. Submitted patches
will also be accompanied by additional data, such as a com-
ment describing the changes made. Patch files are created and
used primarily by developers, individuals who have consider-
able shared knowledge.

Most FLOSS projects use a source code control system
(SCCS) to maintain the code for a project (for example,
Subversion or, more recently, git and github). The SCCS
keeps track of the various versions of the code and allows
core developers to apply patches that are shared with other
developers and then become part of the program that is
released to the public. When a patch is added to the SCCS
(called a commit), it is usual for the core developer to write
a short log message describing the change, creating a
source code commit message (see Figure 3). These mes-
sages are intended for use by developers, that is, individ-
uals with access to symmetric knowledge.

To test our hypotheses, we searched for explicit instruc-
tions and statements of how bug reports, patches, and

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019 5

DOI: 10.1002/asi

https://issues.apache.org/bugzilla/show_bug.cgi?id=45287
http://wileyonlinelibrary.com
https://code.mythtv.org/trac/changeset/9506b88b3bc2c3717b32102ece45794fa71f791b/mythtv
https://code.mythtv.org/trac/changeset/9506b88b3bc2c3717b32102ece45794fa71f791b/mythtv
http://wileyonlinelibrary.com

1.4 What to report

When reporting a bug, you should include all information that will help us understand what's wrong, what you
expected to happen and how to repeat the bad behavior. You therefore need to tell us:

- your operating system's name and version number

- what version of curl you're using (curl -V is fine)

- versions of the used libraries that libcurl is built to use

- what URL you were working with (if possible), at least which protocol

and anything and everything else you think matters. Tell us what you expected to happen, tell use what did
happen, tell us how you could make it work another way. Dig around, try out, test. Then include all the tiny bits
and pieces in your report. You will benefit from this yourself, as it will enable us to help you quicker and more

accurately.

Since curl deals with networks, it often helps us if you include a protocol debug dump with your bug report. The

output you get by using the -v or -trace options.

If curl crashed, causing a core dump (in unix), there is hardly any use to send that huge file to anyone of us.
Unless we have an exact same system setup as you, we can't do much with it. Instead we ask you to get a stack

trace and send that (much smaller) output to us instead!

The address and how to subscribe to the mailing lists are detailed in the MANUAL file.

FIG. 4. Instructions for reporting a bug. cURL (from http://curl.haxx.se/docs/bugs.html).

FIG. 5. Instructions for submitting a patch. Boost (from http://www.boost.org/doc/libs/1_39_0/tools/build/v2/hacking.txt).

commit messages should be created or used, thus identify-
ing the norms around these genres. For example, Figure 4
shows an example of instructions for creating a bug report;
Figures 5 and 6, for creating a patch and commit message,
respectively. By including guidelines for bug reports, source
code patches, and commit messages, we span espoused and
enacted communication practices among FLOSS partici-
pants. The espoused practices, articulated in the instructions,
indicate “how one writes appropriately” for the audiences
associated with each of these document types. As well, the
prevalence or absence of such instructions suggests areas
where the community faces communication challenges or

conflict. If a document does not lead to major communica-
tion problems, there is little need to explicitly state what
goes into them. But, if a community struggles with certain
types of communications, guidelines may emerge to address
when “writing appropriately” does not come easily.

We chose examples of a bug report, source code
patches, and commit messages and instructions for these
through a purposeful sample of different FLOSS projects.
A purposeful sampling was used because, first, there is no
complete sampling frame for FLOSS projects to support
random sampling. Researchers often use forges (websites
such as SourceForge that support multiple projects) as a

6 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019

DOI: 10.1002/asi

http://curl.haxx.se/docs/bugs.html
http://www.boost.org/doc/libs/1_39_0/tools/build/v2/hacking.txt

CHANGES file and Sillfi8i8ion logs

Changelog

Many code changes should be noted in the CHANGES file, and all should be documented in Subversion
commit messages. Often the text of the Subversion log and the CHANGES entry are the same, but the distinct
requirements sometimes result in different information.

Subversion log
The Subversion commit log message contains any information needed by
« fellow developers or other people researching source code changes/fixes

« end users (at least point out what the implications are for end users; it doesn't have to be in the most

user friendly wording)

If the code change was provided by a non-committer, attribute it using Submitted-by. If the change was
committed verbatim, identify the committer(s) who reviewed it with Reviewed-by. If the change was committed
with modifications, use the appropriate wording to document that, perhaps "committed with changes" if the
person making the commit made the changes, or "committed with contributions from xxxx" if others made

contributions to the code committed.

Example log message:

Check the return code from parsing the content length, to avoid a crash if requests contain an

invalid content length.
PR: 99999

Submitted by: Jane Doe <janedoe example.com>

Reviewed by: susiecommitter

Commit messages can be minimal when making routine updates to STATUS, for example to propose a

backport or vote.

FIG. 6. Example instructions for SCCS commit messages (from http:/httpd.apache.org/dev/guidelines.html). [Color figure can be viewed at wileyonlinelibrary.com]

basis for sampling, but there are many forges, and many
interesting projects use their own infrastructure instead of
forge. Second, and more important, given the skewed distri-
bution of project sizes, a random sample would include
many small and inactive projects and few, if any, larger
projects. However, small projects are less interesting for
our purpose, as there is less opportunity for communication
across knowledge boundaries. Finally, to examine the valid-
ity of our hypotheses, it did not seem critical to generalize
statistical estimates of parameters of the entire population
of FLOSS projects, for which random sampling would be
necessary.

These projects were purposively selected to achieve var-
iation in size, formality of organization, and target audi-
ence. With the final dimension, we further manipulated the
expected level of symmetry or asymmetry of knowledge
by choosing some projects that primarily served program-
mers or system administrators versus others that served
end users. To improve comparability, we selected several
projects from the general domains of web services, soft-
ware development, and multimedia. Table 1 shows the pro-
jects examined organized by the dimensions of the
sampling. Table 2 presents additional information about
each of the projects.

From the 14 project websites, 246 guideline documents
were collected for analysis—142 about bug reports, 91 about

source code patches, of these 24 cover both bugs and
patches, and 13 that mention commit messages. Two coders
did the search; the choice of documents was confirmed
through weekly discussion with the authors.

Coding

To test our hypotheses, we developed a content-analysis
coding system (Krippendorff, 2004; Neuendorf, 2002) for
the various document characteristics in the hypotheses.
Content analysis was chosen as an appropriate approach
because it provides a way to connect our theoretical con-
cepts to the empirical evidence. In other words, the coding
system provides an approach to measuring our theoretical
constructs, which is necessary to empirically test the pro-
posed hypotheses.

To develop the coding system, we first defined each
concept in the hypotheses from the theoretical sources. We
then inductively coded a small set of documents to refine
these definitions and develop a coding system. We then
applied this system to the collected documents. Coding
was an iterative process (Hruschka et al., 2004; White &
Marsh, 2006), done by two coders using the NVivo pro-
gram. Initial coding disagreements were discussed to con-
sensus; unresolved issues were discussed at regular
meetings with the authors to arrive at an agreed set of

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019 7

DOI: 10.1002/asi

http://httpd.apache.org/dev/guidelines.html
http://wileyonlinelibrary.com

TABLE 1.

FLOSS projects examined.

Big Small
Corporate Foundation Nonorganizational Foundation Nonorganizational
Users are programmers (more symmetric) WebKit gcc Boost libraries ncurses cURL
wget
Users are admins Apache httpd phpMyAdmin
Users are not developer (more asymmetric) VirtualBox Firefox MythTV Pidgin
OpenOffice FFmpeg
TABLE 2. Additional project information.
Projects examined Size® Sponsorship Website
1. WebKit (browser engine) 13M Sponsored by Apple http://www.webkit.org/
2. gec (compiler) 6.5 M Free Software Foundation http://www.gnu.org/software/gcc/
3. ncurses (programming library) 240 K Free Software Foundation http://www.gnu.org/software/ncurses/
4. Boost libraries 23 M Community developed http://www.boost.org/
5. FFMPEG (digital video library and tool) 1.1 M Community developed http://ffmpeg.org/
6. cURL (command line web tool) 270 K Individual-led community http://curl.haxx.se/
7. wget (command line web tool) 49K Free Software Foundation https://www.gnu.org/software/wget/
8. Apache httpd (web server) 700 K Apache Software Foundation project http://httpd.apache.org/
9. phpMyAdmin (web-based 400 K Software Freedom Conservancy http://www.phpmyadmin.net/
database admin tool) project
10. VirtualBox (PC emulator) ™ Sponsored by Oracle http://www.virtualbox.org/
11. OpenOffice (office suite) 23 M Apache Software Foundation project http://www.openoffice.org/
12. Firefox (web browser) 36 M Mozilla http://www.mozilla.org/en-US/firefox/new/
13. MythTV (digital TV recorder) 24M Community developed http://www.mythtv.org/
14. Pidgin (IM client) 270 K Community developed http://pidgin.sourceforge.net

Lines of code, from https://www.openhub.net/ except Apache Open Office, from http://bit.ly/KIB_linescode

codes for each document. We also asked the coders to
identify regularities in the instructions not previously con-
sidered. Such emergent codes were also discussed and if
they seemed interesting, were then coded systematically.
The resulting coded-document collection was then ana-
lyzed quantitatively (i.e., comparing the number of docu-
ments with each code) and qualitatively (i.e., examining
the content of documents with each code), as described in
the following section.

Findings

We compared the documents associated with, first, the
wider span between active users and core developers and,
second, the narrower gap between active users and codevel-
opers. Specifically, we compared the instructions given for
creating and using bug reports, patches, and commit mes-
sages. We present first some general observations before
systematically assessing support for each hypothesis.

First, for the wider gap between active users and core
developers, as shown in the gap between instructions for bug
reports and SCCS commit messages, the differences are
striking: More than 142 documents across the 14 projects
detailed how active users should communicate about newly-
found bugs; only 13 documents from eight projects (six large
and two small) explicitly addressed developers with instruc-
tions on committing patches. Several projects had no specific
instructions for the communication around committing code.

Even when there were instructions, it was often in the form
of documentation for how to handle security-related issues
rather than about the mechanics of day-to-day code commits.

Larger, more established projects (for example, Firefox
and OpenOffice) tended to explicate communication expec-
tations more clearly than did smaller projects (for example,
cURL and wget). A number of the smaller projects we
included (for example, cURL and wget) mainly serve pro-
grammers as active users, in addition to their roles as code-
velopers and core developers. As a result, even the active-
user participants in these small projects have access to
more symmetric knowledge compared with larger projects
involving large numbers of heterogeneous participants,
which we hypothesized would make explicit instructions
unnecessary.

Second, for the narrower gap between active users and
codevelopers, we examined the difference between instruc-
tions for bug reports involving active user and for patches
submitted by codevelopers. We found 91 documents associ-
ated with source code patches compared with the 142 guide-
lines for bug reports. Of these, 24 documents covered both
bugs and patches. However, our analysis of patch-related doc-
uments revealed that a majority of them actually addressed
newcomers to the FLOSS project, consistent with the expec-
tation that these instructions would be more useful in case
of asymmetric knowledge. That is, patch-related documents
often specified the communication process involved in patch
creation and submission as a way to help newcomers become

8 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019

DOI: 10.1002/asi

http://www.webkit.org
http://www.gnu.org/software/gcc/
http://www.gnu.org/software
http://www.boost.org
http://ffmpeg.org
http://curl.haxx.se
https://www.gnu.org/software
http://httpd.apache.org
http://www.phpmyadmin.net
http://www.virtualbox.org
http://www.openoffice.org
http://www.mozilla.org
http://www.mythtv.org
http://pidgin.sourceforge.net
https://www.openhub.net
http://bit.ly/KIB_linescode

TABLE 3. Bug reports vs. patches vs. commit messages.

Bug reports Patches Commit messages x>
Hypothesis
Purpose 11 7 1 8.00+
Hypothesis
Time 0 0 0
Boundaries 15 11 1 11.56*
Ideal types 1 10 4 8.40+
Participants 9 17 3 10.21*
Place 30 17 1 26.38%#*
Hypothesis
Visibility 12 3 5 6.70+
Standardized form 12 2 5 8.32+
Format 13 9 7 1.93
Content 58 26 8 41.83%**
Hypothesis
Provenance 5 13 2 9.70*
New
Process 67 79 7 58.35%%%*
Total # of documents 166 115 13

Note. Count of documents showing number found that exhibited the
hypothesized feature. Documents may show multiple features and describe
multiple genres, so the total is not the column total. The x> column gives
the results of a y? test of independence (df = 2) performed for each feature
to test the significance of the difference in the number of documents found
per genre.
+p < .1, *p < .05, **p < .01, ***p < .001, blank n.s.

involved in the FLOSS endeavor. Many documents discussed
both bug reporting and patches as a way to become involved,
encouraging bug submissions as a first step. Some projects
explicitly suggested that bug reporters themselves should try
to fix the code and then submit a patch.

A ¥ test of independence was performed to test the
significance of the differences in the number of documents
across the genre for which instructions were provided.
The null hypothesis for this test was that instructions
should be found equally for all three genres. The actual
distribution was statistically significantly different, x> (2,
N =294) = 124, p < .001. We also conducted an overall
x* test to test for a relationship between the document fea-
tures identified in our hypotheses and the document genre.
This test was significant, X2 (20, N =471) =72, p < .001,
meaning that some features are more common for some
genres.

In the remainder of this section, we compare in more
detail the instructions for bug reports, patches, and commit
messages and examine their consistency with each of our
four hypotheses (see Table 3). For each hypothesis, we
compare the number of documents found against the null
hypothesis that the documents should be equally distrib-
uted across the genres. As we are conducting multiple
tests, a Holm—Bonferroni correction was performed to con-
trol the overall error rate.

Hypothesis 1

We find a span in the degree to which projects articu-
lated the purpose of their bug reports (11), patch submis-
sions (7), and commit messages (1). For instance, the
instructions for filing a bug report for the cURL project

(Figure 4) clearly state their purpose: to let developers
know about problems so they can fix them. The instruction
pages for other projects are similarly explicit. By contrast,
there are few instruction pages for using the SCCS (for
example, Figure 6), and the purpose of the commit mes-
sages is not spelled out; rather, it seems to be assumed that
the creator understands the role of commit messages. A x*
test of independence performed to examine the relation
between document genre and number of documents found
showed that these differences were statistically significant
after the Holm—Bonferroni correction, X2 2,N=19) =8,
p <.l

Hypothesis 2

Consistent with this hypothesis, bug report and patch
instructions appear more explicit about the expected context
of use compared with a commit message (see Table 3).
Looking at the subelements of this hypothesis brings out
some interesting similarities and differences.

First, none of the projects specify the fiming of commu-
nication for any of the three types of documents. This
could indicate that the projects do not rely on tight tempo-
ral schedules or coordination of activities.

Boundaries receive most attention in the bug report
(15) and patch (11) instructions, whereas only one project
articulates the scope of communication for commit mes-
sages (1). Boundaries arise for bugs in specifying which
software is concerned. For example, a complex system
such as MythTV is built from many components, but users
rarely perceive these internal components, and so consider
all bugs as originating with the application. Therefore,
bug-reporting instructions need to explain how to localize
a bug. In addition, instructions give caveats about what
kinds of bugs can be fixed and what kinds of new features
will be considered. In contrast, the description of a commit
message almost never specifies such boundaries. The dif-
ference was statistically significant, y* (2, N = 27) = 12,
p < .05.

Ideal types are rarely given for bug reports (1) while
they seem a lot more common for patches (10) and inter-
estingly also for commit messages (4). The distribution
was statistically significantly different, * (2, N = 15) = 8,
p < .1. The lack of focus on ideal types for bug reports
could be associated with the use of standardized forms for
bug reports by many projects.

The same holds true for specifying the relevant
participants, with relatively few references for bug reports
(9) compared with patches (17) and commit messages (3).
The distribution was statistically significantly different, y*
(2, N =29) =10, p < .05. In part, these expectations are
enforced by the technology, as systems limit access to code
(for creating, editing, updating, and disposing code) to
developers who have these privileges. The bug report
instructions from FFMPEG (Figure 7) distinguish different
participants and where they are supposed to post their
messages.

Reference to the place was more common for bug
reports (30) compared with patches (17) and commit

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019 9

DOI: 10.1002/asi

Bug Tracker

Once you have gathered this information, you can submit a report to the

Note, you must there first before you can submit a report.

You should provide all information so that anyone can reproduce the bug.
Please do not report your problem on the developer mailing list:
Only send bug reports there if you also intend to provide a fix.

Submitting Sample Media (=9

The developers may ask you to provide a sample media file illustrating your problem. In this case, please follow these steps:

1. If the sample file is too large (> 10 megabytes), cut it down to size with the Unix 'dd' command:

dd if=sample-file of=small-sample-file bs=1024 count=10000

and then upload small-sample-file rather than sample-file

2. Please choose descriptive names like h26

plenty of bug.rm and sa

jreen_tint.mov

or block_artifacts_after ing.mkv . We already have

3. Upload the sample to the FTP server. Note that our FTP server is write-only. Even though you cannot see the files that you
upload, it will be there and the FFmpeg developers will have access.

Log into upload.ffmpeg.org with an anonymous FTP login.

cd -> incoming

Upload a brief text file describing the sample and what is wrong. This is important! If you leave out the text file, your
sample will most likely be deleted without further examination.

Upload the sample.

4. Email the ffmpeg mailing list and indicate the filename of the sample.

FIG. 7. Example instructions for FEFMPEG bug reports (from http://www.ffmpeg.org/bugreports.html). [Color figure can be viewed at wileyonlinelibrary.com]

messages (1). The distribution was statistically significantly
different, y* (2, N = 48) = 26, p < .001. For instance, in
the instructions for reporting a bug in cURL (Figure 4), we
find numerous references to relevant places such as the
known bugs list, the bug tracking system, mailing lists,
and cURL-users list

Hypothesis 3

As predicted by the hypothesis, more explicit statements
about the form and content were found for bug reports
(92) compared with patches (37) and commit messages
(25). Drilling down into the subhypothesis in Table 3, we
find that bug report instructions include a lot more state-
ments about what work should be made visible (12). We
found only (3) such instructions for patches and interest-
ingly more for commit messages (5), making the distribu-
tion statistically significantly different, ¥* (2, N = 20) = 7,
p <.l

The same was the case for standardized forms built
into the documentation. Bug reports (12) had the most,
followed by commit message forms (5) and patches (2).
The distribution was statistically significantly different,
x* (2, N = 19) = 8, p < .1. The number of structured fields
is greatest for the most institutionalized project, Apache,
which uses the Bugzilla bug tracking system. Interestingly,
the cURL project simply encourages submissions by email,
asking for only basic information. This difference may
indicate that cURL users are sophisticated enough to sub-
mit good bug reports without explicit guidance because

cURL is a command-line tool
programmers.

Format requirements were most prevalent for bug
reports (13), after that patches (9) and commit messages
(7); however, the distribution was not statistically signifi-
cantly different from equal, ¥* (2, N = 29) = 2, n.s., as
there were many more documents than expected for
patches and commit messages. The majority of patches and
SCCS commit messages are just plain text and can be long
or short. However, some projects do suggest fields to
include, such as the relevant bug report that the patch fixes,
even though these are rarely required and exactly how the
patch should be described is left to the developer.

Finally, content instructions constitute the most preva-
lent category across all three document types: bug reports
(58), patches (26), and commit messages (8). That content
expectations stand out as the most salient dimension of
a document for most users should not come as a surprise.
The distribution was statistically significantly different,
> (2, N=92)=42,p < .001.

Hypothesis 4

Partially consisted with the hypothesis, bug reports
(5) and patches (13) called for an explicit statement of the
provenance of the communication compared with commit
messages (2). The distribution was statistically significantly
different, X2 (2, N = 20) = 10, p < .05. Yet it should be
noted that we found three times as many instructions for
patches than bug reports, counter to our expectations. The

used primarily by

10 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019

DOI: 10.1002/asi

http://www.ffmpeg.org/bugreports.html
http://wileyonlinelibrary.com

Changing and Commenting Tickets

Once a ticket has been entered into Trac, you can at any time change the information by annotating the
bug. This means changes and comments to the ticket are logged as a part of the ticket itself.

When viewing a ticket, the history of changes will appear below the main ticket area.

In the Trac project, we use ticket comments to discuss issues and tasks. This makes understanding the
motivation behind a design- or implementation choice easier, when returning to it later.

FIG. 8. Discussion of recorded history of changes in VirtualBox bug report instructions (from https://www.virtualbox.org/wiki/TracTickets).

How to Submit a Patch

Submitting a patch and getting it reviewed and committed to the
Mozilla source tree involves several steps:

Preparation

{

Module

3
=4
L

Crealing a
Patch

Addressing

Testing Review Comments

Getting
Reviews
Committing
the Patch

FIG. 9. Example of patch process instruction. Firefox (from https://developer.
mozilla.org/en-US/docs/Developer_Guide/How_to_Submit_a_Patch).

relatively paucity of provenance instructions for bug
reports might be explained by the system infrastructure
used by most FLOSS projects that requires authors to reg-
ister in the system, allowing others to track the authorship
of their documents, developers cc’ed, and important depen-
dencies. Nevertheless, some projects do specify the impor-
tance of keeping a bug report’s genealogy, as illustrated in
an example from VirtualBox (see Figure 8).

Patches committed to the SCCS identify the document’s
creator, but the commit messages provide no further detail
about the sources the author has consulted. This being said,
core developers do put some effort into tracking the com-
mitted code’s genealogy. For example, the Boost project
documentation details the benefits of keeping track of the
origin, ownership, and location of patches (see Figure 5).
As illustrated in Figure 6, the Apache project does specify
how core developers can help track who has been involved
in the development of committed code.

Summary

In summary, our hypotheses are largely supported by com-
paring the instructions for bug reports (used by individuals

with least access to project knowledge), patches (used by
individuals typically with more project knowledge) to those
of commit messages (used by individuals with the deepest
project knowledge). These findings also support our initial
assumption that the groups examined differ in access to
shared knowledge. The further one gets away from the core
of the project, the more instructions are provided for creating
documentation.

Process

Our final finding comes from the open coding, in which
we observed an interesting regularity in communication
not predicted in our initial hypotheses: a large number of
documents explicated the process of bug-report (67),
patch-related communication (79), and commit messages
(7). The distribution was statistically significantly different,
¥* (2, N = 153) = 58, p < .001. It is worth noticing that all
the ideal types found for patches (10) depicted the commu-
nication process related to patch creation and submission.
For example, Figure 9 paints the process of submitting a
patch to the Firefox project. We notice how this ideal type
for the process provides a simple visual guide spelling out
the steps involved in preparing, creating, testing, review-
ing, and finally having a core developer commit a new
patch.

Content and form versus context of communication.

Comparing instruction documents related to bug reports
versus patches, we noticed a difference in how frequently
they explicate the context of communication (Hypothesis 2)
compared with content and form (Hypothesis 3). Table 3
shows that more documents explicate the context of use asso-
ciated with source code communication, with the exception
of specifications of boundaries and of where communication
takes place, which is highly prevalent among bug report doc-
uments (see Figure 7). The reverse is true for Hypothesis 3.
Documents targeting active users submitting bug reports
seemed to explicate content and form (Hypothesis 3) more
than patch-related documents. Figure 10 highlights these dif-
ferences, comparing the percentages of documents relating to
each hypothesis out of the total number of either bug reports
or patches.

A possible explanation might be that most projects use
a bug-tracking system. To use such a system effectively,
users need to be told its location and the content and form
of the information that they should provide. The system
automatically records provenance-relevant information, so
bug reporters need not understand what will happen to

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019 11

DOI: 10.1002/asi

https://www.virtualbox.org/wiki/TracTickets
https://developer.mozilla.org/en-US/docs/Developer_Guide/How_to_Submit_a_Patch
https://developer.mozilla.org/en-US/docs/Developer_Guide/How_to_Submit_a_Patch

50%
40%
30%
20% \

10%

Bug
Report

Patches Bug

Report

Bug
Report

Patches Patches

Hypothesis Hypothesis Hypothesis
1 2 3

Bug
Report

Hypothesis
4

Hypothesis 1

. Purpose

Hypothesis 2

Boundries/|deal types/Participants

Place

Hypothesis 3

Visibility/Standardized Form/ Format

Content

Hypothesis 4

Provenance

Patches | Bug Patches
Report

New

N

New

FIG. 10. Comparing the percentages of documents relating to each hypothesis out of the total number of either bug report or patch instructions.

their report in any detail. On the other hand, submitting
a patch is more involved and unpredictable and requires
a better understanding of the communication’s context
(Hypothesis 2). To effectively engage in this type of
communication, developers must understand where it
takes place, who is involved, the boundaries of that
work, and ideal representations of the communication
process.

As participants move from the periphery as active users
to codevelopers submitting source code patches, the
knowledge they require about communication practices
changes. Knowing where to go, what to communicate
about, and in what format signify newcomers’ first steps.
Understanding the context of communication and its prove-
nance is the next step as they move toward the center of
the FLOSS community. Once they become core devel-
opers, we hypothesize, they have learned the ropes and so
do not need to be reminded about the purpose, provenance,
and process. It can be helpful to be reminded about the
context of communication and in particular the content and
form expectations, but there is a need to explicate commu-
nicative expectations only in unusual cases. These results
call for further empirical exploration. Rich practice-
oriented studies may offer important benefits. Such a per-
spective would allow us to further explore what aspects of
communication require particular attention when serving
diverse users.

Discussion

By showing how expectations about documents change
across settings where actors have access to varying levels
of asymmetric or symmetric knowledge, our findings offer
new insights into how the genre, boundary object, and
provenance frameworks may inform one another. We
explore this relationship in three ways. Genre, boundary
objects, and provenance can (a) illuminate different points
on a continuum, (b) enrich one another, and (c) contribute
to a unified framework. We will address each possibility
in turn.

12
DOI: 10.1002/asi

Illuminating Different Points on a Continuum

The literatures on genre, boundary objects, and prove-
nance have each helped articulate how one communicates
effectively at different points along the continuum between
access to asymmetric and symmetric knowledge. To date,
genre studies have tended to focus on groups with access
to symmetric knowledge because, by definition, the con-
cept of genre pulls one’s attention toward communicative
consensus, reflected in typified communicative actions that
organizational members invoke in response to recurrent sit-
uations (Swales, 1990). At the other end of the continuum,
the literature on provenance articulates the importance of
tracking documents’ histories to facilitate knowledge shar-
ing in situations with highly asymmetric knowledge.
Somewhere between these two extremes, the notion of
boundary object addresses situations defined by access to
asymmetric knowledge. As Star (2010) argues, her work
on boundary objects, standards, and infrastructure devel-
oped out of an explicit “desire to analyze the nature of
cooperative work in the absence of consensus” and shared
understanding (Star, 2010, p. 604). Thus, our analysis sug-
gests that these views are complementary, each shedding
light on different parts of the continuum of settings.

Enrich One Another

Although the three frameworks offer great analytical
power in and of themselves, our findings suggest that fur-
ther deconstructing the dichotomy between access to sym-
metric versus asymmetric knowledge can enable these
theoretical perspectives to enrich each other. After all,
boundaries come in many hues, some stark, others fuzzy,
with many in between. Participants bring varying degrees
of background to a setting that changes over time. Individ-
uals learn, as do communities, interacting with each other
over time.

The literature on boundary objects may therefore gain
from cross-pollination with genre and provenance studies.
According to Star (2010), the majority of boundary-object
studies emphasize interpretive flexibility, that is, the same
boundary object can mean different things to different

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019

groups. For instance, a road map may highlight a series of
animal habitats to a zoologist, but to a vacationer it points
the way to a campground. However, overemphasis on inter-
pretive flexibility can lead to overlooking how boundary
objects arise due to what Star calls “information needs” or,
in our terms, due to access to asymmetric knowledge about
information and work requirements. Shifting focus from
interpretive flexibility to information and work needs and
their different material and organizational instantiations pro-
vides a more nuanced analysis of not only what people
make of boundary objects they frequently use but also what
aspects of these recurrent communicative actions are more
or less important to them. Genre theory may help articulate
these information needs by specifying the context, content,
and purpose of recurrent communicative actions. The notion
of provenance further allows us to explore the history of
such artifacts and how they explicate changes to custody,
ownership, content, and form. In short, enriching the notion
of boundary object with insights from genre and provenance
theory allows us to move beyond an emphasis on interpre-
tive flexibility, adding as well what it takes to overcome the
“information needs” of different group, for example, FLOSS
project users, codevelopers, and core developers.

Contribute to a Unified Framework

A unified framework combining the three perspectives
raises a fundamentally different set of issues. The concept
of provenance has gained prominence in computer science
to help describe the flow of information across applications
and files. The literature on genres and boundary objects
may strengthen the descriptive power of this endeavor by
highlighting how the movements of such information man-
ifest themselves in different types of objects through peo-
ple’s communication practices (for example, standardized
forms and ideal objects). As information constantly gets
recycled, reworked, and repackaged, the context, purpose,
content, and form may change. Genre theory offers a ready
toolbox to describe such changes.

For instance, in our initial hypothesis development, we
had not expected that FLOSS participants would explicate
the communication process itself. However, process emerged
as the most frequently explicated expectation among people
with asymmetric knowledge. In retrospect, this explicating
process makes sense theoretically. Both contemporary genre
and boundary object literatures build on a practice-theory
foundation that stipulates that social structures and phenom-
ena only exist as they get produced and reproduced in
people’s everyday social practices (de Certeau, 1984;
@sterlund & Carlile, 2005), and “in response to recurrent sit-
uations” (Orlikowski & Yates, 1994). Consistent with both
perspectives, it is understandable that FLOSS core developers
take time to explicate the sequential process of FLOSS com-
munication activities to help ensure mutual understanding.

Bringing boundary objects, genres, and provenance
under the same conceptual roof allows us to consider them
in a unified framework, which speaks to the broader

literature on documents, boundary objects, and provenance
(Trace, 2016; Huvila, 2011, 2016; Levy, 2016; Shankar
et al., 2016; Trace, 2016). Taking our point of departure in
a community’s typified communicative actions invoked in
response to recurrent situations (i.e., genres), we observe
that participants may bring different stocks of knowledge to
the situations. Participants need and seek different things
from these recurrent communicative actions. As this study
suggests, articulating content and format expectations might
be more defining for some recurrent communicative prac-
tices than for others, depending on the distribution of knowl-
edge characterizing the context.

A unified framework also allows us to track the origin,
development, and sometimes death of typified communica-
tive actions. For instance, how do certain communication
practices become standardized? Most of our FLOSS docu-
ments are by now part of project infrastructures and stan-
dardized regarding what part of the communication can be
poorly structured and what parts must be well structured.
A detailed comparison of new and established FLOSS pro-
jects may further reveal how boundary objects develop into
more standardized genre expectations and established
repositories with a carefully nurtured provenance.

The historical lens brings debates about power, prevalent
in the boundary object literature, into genres and provenance
studies. Access to asymmetric knowledge and asymmetric
power go hand in hand. The distribution of project-relevant
knowledge affects organizational members’ ability to per-
form. Tracking what parts of communication are explicated
with regard to particular relations (for example, active users
and core developers) may suggest where the organization
has experienced conflicts. If communication among organi-
zational members occurs without problems, then there is no
need for fixes and thus little incentive to explicate communi-
cative expectations through documents (as seems to be the
case among core FLOSS developers). On the other hand, if
problems recur in the communication between organiza-
tional members (for example, between active users and core
developers) the organization may have a need and incentive
to explicate expectations. Levina and Orlikowski’s (2009)
study of power and genres support such assumptions. They
found that newcomers are more likely to introduce new
communicative practices and thus challenge existing ones.
In the FLOSS context, one can imagine active users posting
bug reports in all shapes and formats to support their own
performances and interests. This variety of reports may have
made life difficult for developers, motivating them to expli-
cate communication expectations around bug reports.

Conclusion

Let us return to our original concern: How do common
documents serve diverse users? How does one write appro-
priately when no consensus or access to symmetric knowl-
edge defines the communicative context? For instance,
virtual collaborations bring together people with various
access to and understanding of the work at hand, yet their

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019 13

DOI: 10.1002/asi

shared documents must serve these diverse users, many of
whom are literally not on the same page.

The present research contributes to both scholarship and
practice around this question. The article develops a frame-
work based on three previously separate bodies of litera-
ture that characterize documents serving collaborators with
access to asymmetric knowledge versus documents sup-
porting those with symmetric knowledge. Drawing on
document-centric approaches, we hypothesize that docu-
ments supporting asymmetric groups are likely to be more
prescriptive and explicate their own use compared with
documents supporting symmetric groups.

Our work suggests that practitioners of online commu-
nities would benefit from explicitly considering (a) how
much access to relevant knowledge various participants
hold, and (b) how prescriptive and explicit documents must
be to support those various groups. Systematic knowledge
of such document variations becomes essential to support
heterogeneous online communities.

Theoretically, the research extends the current literature
on genre, boundary objects, and provenance by suggesting
ways in which they may contribute to one another. Consid-
eration of the varying degrees of access to relevant knowl-
edge opened us analytically to productive cross-pollination
between genre, boundary object, and provenance studies.
Although our study compared extremes (i.e., bug reports
and commit messages), we note that it is not simply a mat-
ter of switching between access to asymmetric or symmetric
knowledge and with it high and low explication of commu-
nication. Interesting dynamics reveal themselves when we
examine the space between these extremes. In situations
with a highly diverse knowledge among participants (for
example, our case of bug reports), explicating the purpose,
content, form, and place of communication becomes partic-
ularly pertinent. As we narrow the gap a notch (for exam-
ple, patches), we see a shift toward explicating the context
and provenance of communication. What remains constant
is the need to explicate the process, the work practices out
of which the communication emerges.

Methodologically, online-community studies benefit. In
distributed settings, researchers cannot rely on colocation
to gain knowledge about work and learning but must estab-
lish copresence by engaging in the ongoing communication
with a keen eye to the materiality and history of those
interactions. Trace data, such as the documents we exam-
ined, constitute the stuff of many contemporary online
community studies (Geiger & Ribes, 2011). But facing the
heaps of data left behind by digital collaborators is daunt-
ing. It can be difficult to develop what Beaulieu (2010)
labels copresence. Instead of focusing on colocation,
copresence can be established through various interaction
modes such as joining feeds, participating in discussion
boards, and diving into archival materials. Many of these
traces are thin data in and of themselves. However, as
Ribes (2014) indicates, participants in these online commu-
nities must rely on these same traces to make sense of their
distributed and “thick activities” (Ribes, 2014, p. 2).

Better understanding of the types of knowledge needed
to establish copresence in different online situations will
assist researchers navigating distributed collaborations to
make informed interpretations and thick descriptions. The
framework provides an approach to understanding the prac-
tices of heterogeneous audiences with access to differing
knowledge. As researchers describe the typified communica-
tive actions invoked in response to recurrent situations, they
can explore what information needs drive different audi-
ences, depending on their access to relevant knowledge, and
how those organize around specific objects and manifesta-
tions of the origins, custody, and ownership of those docu-
ments. Researchers can be sensitive to what parts of the
interactions the documents explicate, whether it is the con-
tent, context, process, or provenance.

A unified genre, boundary object, and provenance frame-
work will further how we theorize online interaction and
digital collaborations. Mapping the document universe in,
for example, online-learning communities will extend our
understanding of the learning trajectories newcomers take as
they enter digital collaborations. Access to work and activity
awareness often involves documentation. Understanding
how such documents are tailored (or not) to facilitate new-
comers’ legitimate peripheral participation will deepen our
understanding of such learning processes. We suggest that
newcomers first struggle to master the content and format of
certain work practices and only later develop a sense of the
work context, its participants, places, and temporal structure.
The work process and its provenance are central activities
from the beginning, but gain in importance as more forms
of participation open up to them.

Finally, the research contributes to system design for
online communities and technology-supported collabora-
tions more broadly. The extensive use of standardized
forms for bug reports offers some interesting insights that
should be critically tested in other organizational contexts
dealing with different types of knowledge. In healthcare,
for instance, where the central artifact is the human body,
not code, one finds a push for more standardized record
keeping and information sharing. If it is mainly groups fac-
ing a wide knowledge gap who benefit from using stan-
dardized forms, resistance to such standardized systems
will likely come, one could hypothesize, from groups fac-
ing a relatively narrow knowledge gap. Using a standard-
ized form that requires high regularity in semantics and
objects and great detail is likely to seem a waste of time
for someone with considerable background in the specific
area. A detailed understanding of what characterizes docu-
ments that support collaborators with different degrees of
heterogeneous knowledge could help create systems that
tailor content to specific user groups.

References

Bazerman, C. (1995). Systems of genres and the enactment of social
intentions. In A. Freedman & P. Medway (Eds.), Genre and the new
rhetoric (pp. 79-101). London: Taylor and Francis.

14 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019

DOI: 10.1002/asi

Beaulieu, A. (2010). Research note: From co-location to co-presence:
Shifts in the use of ethnography for the study of knowledge. Social
Studies of Science, 40(3), 453—470.

Bowker, G.C., & Star, S.L. (1999). Sorting things out: Classification and
its consequences. Cambridge, MA: MIT Press.

Cannon-Bowers, J.A., & Salas, E. (1993). Shared mental models in expert
decision making. In N.J. Castellan (Ed.), Individual and group decision
making (pp. 221-246). Hillsdale, NJ: Lawrence Erlbaum Associates.

Clark, H.H., & Brennan, S.E. (1991). Grounding in communication. In L.
B. Resnick, J.M. Levine, & S.D. Teasley (Eds.), Perspectives on
socially shared cognition (pp. 127-149). Washington, DC: American
Psychological Association.

Cox, A. (1998). Cathedrals, Bazaars and the Town Council. Retrieved
from http://slashdot.org/features/98/10/13/1423253..shtml.

Cramton, C.D. (2001). The mutual knowledge problem and its consequences
for dispersed collaboration. Organization Science, 12(3), 346-371.

Crowston, K., & Kwasnik, B.H. (2003). Can document-genre metadata
improve information access to large digital collections? Library Trends,
52(2), 345-361.

Crowston, K., Wei, K., Li, Q., & Howison, J. (2006). Core and periphery
in Free/Libre and Open Source software team communications. In Pro-
ceedings of Hawai’i International Conference on System System
(HICSS-39), Kaua’i, Hawai’i. https://doi.org/10.1109/HICSS.2006.101.

de Certeau, M. (1984). The practice of everyday life (S. Rendall, trans.).
Berkeley, CA: University of California Press.

Gacek, C., & Arief, B. (2004). The many meanings of open source. IEEE
Software, 21(1), 34-40.

Geiger, R.S. & Ribes, D. (2011). Trace ethnography: Following coordina-
tion through documentary practices. In Proceedings of Hawaii Interna-
tional Conference on System Sciences (HICSS), pp. 1-10. IEEE.

Gilliland-Swetland, A. (2005). Electronic records management. Annual
Review of Information Science and Technology, 39(1), 219-253.

Howison, J., & Crowston, K. (2014). Collaboration through open superpo-
sition: A theory of the open source way. MIS Quarterly, 38(1), 29-50.

Hruschka, D.J., Schwartz, D., St. John, D.C., Picone-Decaro, E.,
Jenkins, R.A., & Carey, J.W. (2004). Reliability in coding open-ended
data: Lessons learned from HIV behavioral research. Field Methods,
16(3), 307-331.

Huvila, 1. (2011). The politics of boundary objects: hegemonic interven-
tions and the making of a document. Journal of the American Society
for information Science and Technology, 62(12), 2528-2539.

Huvila, 1. (2016). Awkwardness of becoming a boundary object: Mangle
and materialities of reports, documentation data, and the archaeological
work. The Information Society, 32(4), 280-297.

Krippendorff, K. (2004). Content analysis: An introduction to its method-
ology. Newbury Park, CA: Sage.

Levina, N., & Orlikowski, W.J. (2009). Understanding shifting power
relations within and across organizations: A critical genre analysis.
Academy of Management Journal, 52(4), 672—703.

Levy, D.M. (2016). Scrolling forward: Making sense of documents in the
digital age (2nd ed.). New York, NY: Arcade.

Lonsdale, H., Jensen, C., Wynn, E., & Dedual, N.J. (2010). Cutting and
pasting up: "Documents" and provenance in a complex work environ-
ment. Hawai’i International Conference on System Science (HICSS-
43), Kauai, HI.

Mockus, A., Fielding, R.T., & Herbsleb, J.D. (2002). Two case
studies of open source software development: Apache and Mozilla.
ACM Transactions on Software Engineering and Methodology, 11(3),
309-346.

Moon, J., & Sproull, L. (2000). Essence of distributed work: The case of the
Linux kernel. First Monday, 5(11). https://doi.org/10.5210/fm.v5i11.801
Neuendorf, K.A. (2002). The content analysis guidebook. Thousand

Oaks, CA: Sage.

Orlikowski, W.J., & Yates, J. (1994). Genre repertoire: The structuring of
communicative practices in organizations. Administrative Science Quar-
terly, 33, 541-574.

Orlikowski, W.J., Yates, J., Okamua, K., & Fujimoto, M. (1995). Shaping
electronic communication: The metastructuring of technology in the
context of use. Organization Science, 6(4), 423-444.

Osterlund, C., & Carlile, P. (2005). Relations in practice: Sorting through
practice theories on knowledge sharing in complex organizations. The
Information Society, 21(2), 91-107.

Ram, S., & Liu, J. (2012). A semantic foundation for provenance manage-
ment. Journal on Data Semantics, 1(1), 11-17.

Raymond, E. (1998). The cathedral and the bazaar. First Monday, 3(2).
https://doi.org/10.5210/fm.v3i2.578

Raymond, E.S. & Moen, R. (2006). How to ask questions the smart way.
Retrieved from http://catb.org/~esr/faqs/smart-questions.html.

Ribes, D. (2014). Ethnography of scaling, or, how to a fit a national
research infrastructure in the room. In Proceedings of the 17th ACM
Conference on Computer Supported Cooperative Work & Social Com-
puting (pp. s158—s170). New York: ACM.

Rossi, M.A. (2004). Decoding the free/open source puzzle: A survey of theo-
retical and empirical contributions. In J. Bitzer & P. Schroder (Eds.), The
economics of open source software development: Analyzing motivation,
organization, innovation and competition in the open source software revo-
lution (pp. 15-55). Amsterdam, The Netherlands: Elsevier Press.

Scozzi, B., Crowston, K., Eseryel, U.Y., & Li, Q. (2008). Shared mental
models among open source software developers. In Proceedings of
Hawai’i International Conference on System System (HICSS-41), Big
Island, Hawai’i.

Shankar, K., Hakken, D., & @sterlund, C. (2016). Rethinking documents.
In U. Felt, R. Fouché, C.A. Miller, & L. Smith-Doerr (Eds.), Handbook
of science and technology studies (4th ed.; pp. 59-85). Cambridge: MIT
Press.

Star, S.L. (1989). The structure of ill-structured solutions: Boundary
objects and heterogeneous distributed problem solving. In L. Gasser &
M.N. Huhns (Eds.), Distributed artificial intelligence (Vol. 2,
pp. 37-54). San Mateo, CA: Morgan Kaufmann.

Star, S.L. (2010). This is not a boundary object: Reflections on the origin
of a concept. Science, Technology & Human Values, 35(5), 601-617.
Steinmacher, I., Graciotto Silva, M.A., Gerosa, M.A., & Redmiles, D.F.
(2015). A systematic literature review on the barriers faced by new-
comers to open source software projects. Information and Software

Technology, 59, 67-85.

Swales, J.M. (1990). Genre analysis: English in academic and research
settings. New York: Cambridge University Press.

Trace, C.B. (2016). Ethnomethodology: Foundational insights on the
nature and meaning of documents in everyday life. Journal of Docu-
mentation, 72(1), 47-64.

von Hippel, E.A. (2001). Innovation by user communities: Learning from
open-source software. Sloan Management Review, 42(4), 82-86.

von Hippel, E.A., & von Krogh, G. (2003). Open source software and the
"private-collective" innovation model: Issues for organization science.
Organization Science, 14(2), 209-213.

Wayner, P. (2000). Free for all. New York: HarperCollins.

White, M.D., & Marsh, E.E. (2006). Content analysis: A flexible method-
ology. Library Trends, 55(1), 22-45.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2019 15

DOI: 10.1002/asi

http://slashdot.org/features/98/10/13/1423253.shtml
https://doi.org/10.1109/HICSS.2006.101
https://doi.org/10.5210/fm.v5i11.801
https://doi.org/10.5210/fm.v3i2.578
http://catb.org/~esr/faqs/smart-questions.html

	 Documentation and Access to Knowledge in Online Communities: Know Your Audience and Write Appropriately?
	Introduction
	Theory Elaboration and Hypotheses
	Genre Theory
	Boundary Objects Theory
	Provenance Theory

	Design of the Research
	Setting
	Sample
	Coding

	Findings
	Summary
	Process

	Discussion
	Illuminating Different Points on a Continuum
	Enrich One Another
	Contribute to a Unified Framework

	Conclusion
	References

