
Core-Periphery Communication
and the Success of Free/Libre Open Source

Software Projects

Kevin Crowston1(&) and Ivan Shamshurin2

1 Syracuse University School of Information Studies,
348 Hinds Hall, Syracuse, NY 13244–4100, USA

crowston@syr.edu
2 Syracuse University School of Information Studies,
337 Hinds Hall, Syracuse, NY 13244–4100, USA

ishamshu@syr.edu

Abstract. We examine the relationship between communications by core and
peripheral members and Free/Libre Open Source Software project success. The
study uses data from 74 projects in the Apache Software Foundation Incubator.
We conceptualize project success in terms of success building a community, as
assessed by graduation from the Incubator. We compare successful and
unsuccessful projects on volume of communication by core (committer) and
peripheral community members and on use of inclusive pronouns as an indi-
cation of efforts to create intimacy among team members. An innovation of the
paper is that use of inclusive pronouns is measured using natural language
processing techniques. We find that core and peripheral members differ in their
volume of contribution and in their use of inclusive pronouns, and that volume
of communication is related to project success.

1 Introduction

Community-based Free/Libre Open Source Software (FLOSS) projects are developed
and maintained by teams of individuals collaborating in globally-distributed environ-
ments [8]. The health of the developer community is critical for the performance of
projects [7], but it is challenging to sustain a project with voluntary members over the
long term [4, 11]. Social-relational issues have been seen as a key component of
achieving design effectiveness [3] and enhancing online group involvement and col-
laboration [15]. In this paper, we explore how community interactions are related to
community health and so project success.

Specifically, we examine contributions made by members in different roles. Mem-
bers have different levels of participation in FLOSS development and so taken on
different roles [5]. A widely accepted models of roles in community-based FLOSS
teams is the core-periphery structure [1, 3, 12]. For example, Crowston and Howison [7]
see community-based FLOSS teams as having an onion-like core-periphery structure, in
which the core category includes core developers and the periphery includes
co-developers and active users. Rullani and Haefliger [17] described periphery as a
“cloud” of members that orbits around the core members of open source software
development teams.

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
K. Crowston et al. (Eds.): OSS 2016, IFIP AICT 472, pp. 45–56, 2016.
DOI: 10.1007/978-3-319-39225-7_4

Generally speaking, access to core roles is based on technical skills demonstrated
through the development tasks that the developer performs [13]. Core developers
usually contribute most of the code and oversee the design and evolution of the project,
which requires a high level of technical skills [7]. Peripheral members, on the other
hand, submit patches such as bug fixes (co-developers), which provides an opportunity
to demonstrate skills and interest, or just provide use cases and bug reports or test new
releases without contributing codes directly (active users), which requires less technical
skill [7].

Despite the difference in contributions, both core and peripheral members are
important to the success of the project. It is evident that, by making direct contributions
to the software developed, core members are vital to project development. On the other
hand, even though they contribute only sporadically, peripheral members provide bug
reports, suggestions and critical expertise that are fundamental for innovation [17]. In
addition, the periphery is the source of new core members [10, 20], so maintaining a
strong periphery is important to the long-term success of a project. Amrit and van
Hillegersberg [1] examined core-periphery movement in open source projects and
concluded that a steady movement toward the core is beneficial to a project, while a
shift away from the core is not. But how communication among core and periphery
predicts project success has yet to be investigated systematically, a gap that this paper
addresses.

2 Theory and Hypotheses

To develop hypotheses for our study, we discuss in turn the dependent and independent
variables in our study.

The dependent variable for our study is project success. Project success for FLOSS
projects can be measured in many different ways, ranging from code quality to member
satisfaction to market share [6]. For the community-based FLOSS projects we examine,
success in building a developer community is a critical issue, so we chose building a
developer community as our measure of success.

To identify independent variables that predict success (i.e., success in building a
developer community), we examine communication among community members.
A starting hypothesis is that more communication is predictive of project success:

H1: Successful projects will have a higher volume of communication than unsuc-
cessful projects

More specifically, we are interested in how members in different roles contribute to
projects. As noted above, projects rely on contributions from both core and peripheral
members. We can therefore extend H1 to consider roles. Specifically, we hypothesize
that:

H2a: Successful projects will have a higher volume of communication by core
members than unsuccessful projects.
H2b: Successful projects will have a higher volume of communication by peripheral
members than unsuccessful projects.

46 K. Crowston and I. Shamshurin

Prior research on the core-periphery structure in FLOSS development has found
inequality in participation between core and peripheral members. For example,
Luthiger Stoll [14] found that core members make greater time commitment than
peripheral members: core participants spend an average of 12 h per week, with project
leaders averaging 14 h, and bug-fixers and otherwise active users, around 5 h per
week. Similarly, using social network analysis, Toral et al. [19] found that a few core
members post the majority of messages and act as middlemen or brokers among other
peripheral members. We therefore hypothesize that:

H3: Core members will contribute more communication than will peripheral
members.

Prior research on the distinction between core-periphery has mostly focused on
coding-related behaviour, as project roles are defined by the coding activities per-
formed [3]. However, developers do more than just coding [3]. Both core and
peripheral members need to engage in social-relational behaviour in addition to
task-oriented behaviour such as coding. Consideration of these non-task activities is
important because effective interpersonal communication plays a vital role in the
development of online social interaction [16].

Scialdone et al. [18] and Wei et al. [21] analyzed group maintenance behaviours
used by members to build and maintain reciprocal trust and cooperation in their
everyday interaction messages, e.g., through emotional expressions and politeness
strategies. In this paper, we examine one factor they identified, investigating how core
and peripheral members use language to create “intimacy among team members” thus
“building solidarity in teams”. Specifically, Scialdone et al. [18] found that core
members of two teams used more inclusive pronouns (i.e., pronouns referring to the
team) than did peripheral members. They interpreted this finding as meaning that
“peripheral members in general do not feel as comfortable expressing a sense of
belonging within their groups”. We therefore hypothesize that:

H4: Core members will use more inclusive pronouns in their communication than
will peripheral members.

Scialdone et al. [18] further noted that one team they studied that had ceased
production had exhibited a greater gap between core and periphery in usage of
inclusive pronouns. Such a situation could indicate that the peripheral members of the
group do not feel ownership of the project, with negative implications for their future as
potential core members. Scialdone et al. [18] noted that such use of inclusive pronouns
is “consistent with Bagozzi and Dholakia [2]’s argument about the importance of
we-intention in Linux user groups, i.e., when individuals think themselves as ‘us’ or
‘we’ and so attempt to act in a joint way”. A similar argument can be made for the
importance of core member use of inclusive pronouns. We therefore hypothesize that:

H5a: Successful projects will have a higher usage of inclusive pronouns by core
members than unsuccessful projects.
H5b: Successful projects will have a higher usage of inclusive pronouns by
peripheral members than unsuccessful projects.

Core-Periphery Communication and the Success of FLOSS Projects 47

3 Methods

3.1 Setting

Scialdone et al. [18] and Wei et al. [21] studied only a few projects and noted problem
making comparison across projects that can be quite diverse. To address this concern,
in this paper we studied a larger number of projects (74 in total) that all operated within
a common framework at a similar stage of development. Specifically, we studied
projects in the Apache Software Foundation (ASF) Incubator. The ASF is an umbrella
organization including more than 60 free/libre open source software (FLOSS) devel-
opment projects. The ASF’s apparent success in managing FLOSS projects has made it
a frequently mentioned model for these efforts, though often without a deep under-
standing of the factors behind that success.

The ASF Incubator’s purpose is to mentor new projects to the point where they are
able to successfully join the ASF. Projects are invited to join the Incubator based on an
application and support from a sponsor (a member of the ASF). Accepted projects
(known as Podlings) receive support from one or more mentors, who help guide the
Podlings through the steps necessary to become a full-fledged ASF project.

The incubation process has several goals, including fulfillment of legal and
infrastructural requirements and development of relationships with other ASF projects,
but the main goal is to develop effective software development communities, which
Podlings must demonstrate in order to graduate from the Incubator. The Apache
Incubator specifically promotes diverse participation in development projects to
improve the long-term viability of the project community and ensure requisite diversity
of intellectual resources. The time projects spend in incubation varies widely, from as
little as two months to nearly five years, indicating significant diversity in the efforts
required for Podlings to become viable projects. The primary reason that projects are
retired from the Incubator (rather than graduated) is a lack of community development
that stalls progress.

3.2 Data Collection and Processing

In FLOSS settings, collaborative work primarily takes place by means of asynchronous
computer-mediated communication such as email lists and discussion fora [5]. ASF
community norms strongly support transparency and broad participation, which is
accomplished via electronic communications, such that even collocated participants are
expected to document conversations in the online record, i.e., the email discussion lists.
We therefore drew our data from messages on the developers’ mailing list for each
project.

A Perl script was used to collect messages in html format from the site http://
markmail.org. We discarded any messages sent after the Podling either graduated or
retired from the ASF Incubator, as many of the projects apparently used the same email
list even after graduation. After the dataset was collected, relevant data was extracted
from the html files representing each message thread and other sources.

48 K. Crowston and I. Shamshurin

http://markmail.org
http://markmail.org

3.2.1 Dependent Variable: Success
The dependent variable, project success in building a community, was determined by
whether the project had graduated (success) or been retired (not success) based on the
list of projects maintained by the Apache Incubator and available on the Apache
website. The dataset includes email messages for 24 retired and 50 graduated Podlings.
The data set also included messages for some projects still in incubation and some with
unknown status; these were not used for further analysis.

As a check on this measure of successful community development, we examined
the number of developers active in the community (a more successful community has
more developers). We considered as active members of the projects those who sent an
email to the developer mailing list during incubation.

3.2.2 Core Vs. Periphery
Crowston et al. [9] suggested three methods to identify core and peripheral members in
FLOSS teams: relying on project-reported formal roles, analysis of distribution of
contributions based on Bradford’s Law of Scatter, and core-and-periphery analysis of
project social network. Their analysis showed that relying on project-reported roles was
the most accurate. Therefore, in this study, we identified a message sender as a core
member if the sender’s name was on the list of project committers on the project
website. If we did not find a match, then the sender was labeled as non-committer
(peripheral member). we developed a matching algorithm to take into account the
variety of ways that names appear in email message.

3.2.3 Inclusive Pronouns
As noted above, we examined the use of inclusive pronouns as one way that team
members build a sense of belong to the group. Inclusive pronouns were defined as:

reference to the team using an inclusive pronoun. If we see “we” or “us” or “our”, and it
refers to the group, then it is Inclusive Reference. Not if “we” or “us” or “our” refer to another
group that the speaker is a member of.

That is, the sentences were judged on two criteria: (1) whether there are language
cues for inclusive reference (a pronoun), as specified in the definition above and (2) if
these cues refer to the current group rather than another group. To judge the second
criteria may require reviewing the sentence in the context of the whole conversation.
This usage is only one of the many indicators studied by Scialdone et al. [18] and Wei
et al. [21], but it is interesting and tractable for analysis.

To handle the large volume of messages drawn from many projects, we applied
NLP techniques as suggested (but not implemented) by previous research. Specifically,
we used a machine-learning (ML) approach, where an algorithm learns to classify
sentences from a corpus of already coded data. Sentences were chosen as the unit of
coding instead of the thematic units more typically used in human coding, because
sentences can be more easily identified for machine learning. Training data was
obtained from the SOCQA (Socio-computational Qualitative Analysis) project at the
Syracuse University (http://socqa.org/) [22, 23]. The training data consists of 10,841

Core-Periphery Communication and the Success of FLOSS Projects 49

http://socqa.org/

sentences drawn from two Apache projects, SpamAssassin and Avalon. Trained
annotators manually coded each sentence as to whether it included an inclusive pro-
noun (per the above definition) or not. The distribution of the classes in the training
data is shown in Table 1 (“yes” means the sentence has an inclusive pronoun). Note
that the sample is unbalanced.

As features for the ML, we used bag of words, experimenting with unigrams,
bigrams and trigrams. Naïve Bayes (MNB), k Nearest Neighbors (KNN) and Support
Vector Machines (SVM) algorithms (Python LibSVM implementation) were trained
and applied to predict the class of the sentences, i.e., whether a sentence has inclusive
pronoun or not. We expected that the NLP would have no problem handling the first
part of the definition, but that the second (whether the pronoun refers to the project or
some other group) would pose challenges.

10-fold cross-validation was used to evaluate the classifier’s performance on the
training data. Results are shown in Table 2. The results show that though all three
approaches gave reasonable performance, SVM outperformed other methods. The
Linear SVM model was therefore selected for further use. We experimented with
tuning SVM parameters such as minimal term frequency, etc. but did not find settings
that affected the accuracy, so we used the default settings.

The random guess baseline for a binary classification task would give an accuracy
of 0.5; a majority vote rule baseline (classify all examples to the majority class)
provides an accuracy of 0.87. The trained SVM model significantly outperforms both.
To further evaluate model performance, it was applied to new data and the results
checked by a trained annotator (one of the annotators of the training data set).
Specifically, we used the model to code 200 sentences (10 sentences randomly selected
from 5 projects each in the “graduated”, “in incubator”, “retired” and “unknown”
classes of projects). The annotator coded the same sentences and we compared the
results. The Cohen kappa (agreement corrected for chance agreement) for the human
vs. machine coding was 88.6 %, which is higher than the frequently applied threshold
of 80 % agreement. In other words, the ML model performed at least as well as a
second human coder would be expected to do.

Table 1. Distribution of classes in the training data

%

“yes” 1395 12.9
“no” 9446 87.1
Total 10841

Table 2. Results of 10-fold cross-validation on the training data

Unigram Bigram Trigram

MNB 0.86 0.81 0.75
KNN 0.89 0.89 0.88
SVM (LinearSVC) 0.97 0.97 0.97

50 K. Crowston and I. Shamshurin

Examining the results, somewhat surprisingly, we found no cases where a predicted
“inclusive reference” refers to another group, suggesting that the ML had managed to
learn the second criterion. Two sentences that the model misclassified are illustrative of
limitations of the approach:

It looks like it requires work with “our @patterns” in lib/path.pmI looked at the path.pm for
www.apache.org and it is a clue.

The actual class is “no” but the classifier marked it as “yes” because the inclusive
pronoun “our” was included in the sentence, though in quotes.

Could also clarify download URLs for third-party dependencies wecan’t ship.

The actual class is “yes” but the model marked the sentence as “no” due to the error
in spelling (no space after “we”). The human annotator ignored the error, but there were
not enough examples of such errors for the ML to learn to do so. Despite such
limitations, the benefit of being able to handle large volumes of email more than makes
up for the possible slight loss in reliability of coding, especially considering that human
coders are also not perfectly reliable.

4 Findings

In this section we discuss in turn the findings from our study, first validating the
measure of success, then examining support for each hypothesis.

4.1 Membership

As a check on our measure of success (graduation from the Incubator), we compared
the number of developers in graduated and retired projects (active developers were
those who had participated on the mailing list). The results are shown in Table 3. As
the table shows, graduated projects had more than twice as many developers active on
the mailing list as did retired projects. The differences are so large than a statistical test
of significance seems superfluous (for doubters, a Kruskal-Wallis test, chosen because
the data are not normally distributed, shows a statistically significant difference in the
number of developers between graduated and retired projects, p = 0.001). This result
provides evidence for the validity of graduation as a measure of project community
health.

Table 3. Mean number of developers by project status and developer role

Project status Core Peripheral

Graduated 31.6 (19.4) 82.2 (102.4)
Retired 13.9 (9.3) 25.4 (18.3)

N = 74. Standard deviations in
parentheses.

Core-Periphery Communication and the Success of FLOSS Projects 51

http://www.apache.org

Hypothesis 1 was that successful projects would have more communication. As
shown in Table 4, this hypothesis is strongly supported, as graduated projects have
many times more messages sent than retired projects during the incubation process
(p = 0.0001).

Hypotheses 2a and 2b were that core and peripheral members respectively would
communicate more in successful projects than in unsuccessful projects. The differences
in Tables 4 and 5 show that these hypotheses are supported (p = 0.0001 for core and
p = 0.0001 for peripheral members for overall message count in graduated vs. retired
projects, and p = 0.0011 and p = 0.0399 for messages per developer).

Hypothesis 3 was that core members would communicate more than peripheral
members. From Table 4, we can see that in fact in total core and peripheral members
send about the same volume of messages in both graduated and retired projects.
However, there are fewer core members, so on average, each sends many more mes-
sages on average, as shown in Table 5 (p = 0.0001).

Table 4. Mean number of project messages by project status and developer role

Core Peripheral

Graduated 8265 (8878) 7306 (8908)
Retired 1791 (1805) 1652 (2058)

N = 74. Standard deviations in
parentheses.

Table 5. Mean number of messages sent per developer by project status and developer role

Core Peripheral

Graduated 239 (191) 109 (119)
Retired 107 (200) 47 (92)

N = 74. Standard deviations in
parentheses.

Table 6. Mean number of messages including an inclusive pronoun sent per developer by
project status and developer role

Core Periphery

Graduated 22 (18) 6 (5)
Retired 12 (8) 4 (5)

N = 74. Standard deviations in
parentheses.

52 K. Crowston and I. Shamshurin

Hypothesis 4 was that core members would use more inclusive pronouns than
peripheral members. Table 6 shows the number of messages sent by developers that
included an inclusive pronoun. The table shows that core developers do send more
messages with inclusive pronouns in both graduated and retired projects (p = 0.0001).

To control for the fact that core developers send more messages in general, we
computed the percentage of messages that include an inclusive pronoun, as shown in
Table 7. From this table, we can see that the mean percentage of messages sent by core
developers that include an inclusive pronoun is higher than for peripheral members
(p = 0.001).

Hypotheses 5a and b were that there would be more use of inclusive pronouns by
core and peripheral members respectively in successful projects. From Table 6, this
hypothesis seems supported for core members at least, but note that successful projects
have more communication overall. Examining Table 7 suggests that there is in fact
slightly more proportional use of inclusive pronouns by core members in unsuccessful
projects, but no difference in use by peripheral members. However, neither difference is
significant using a KW test, meaning that Hypothesis 5 is not supported.

Finally, to assess which of the factors we examined are most predictive of projects
success, we applied a stepwise logistic regression, predicting graduation from the
various measures of communication developed (e.g., total number of message by
developer role, mean number, percentage of message with inclusive pronouns). Our
first regression identified only one factor as predictive, the number of core members.
This result can be expected, as we argued above that the number of core members can
also be viewed as a measure of community health. A regression without counts of
members identified the total number and the mean number of messages sent by core
members as predictive, with mean having a negative coefficient. (The R2 for the
regression was 33 %.) This combination of factors does not provide much insight as it
is essentially a proxy for developer count: greatest when there are a lot of messages but
not many messages per developer, i.e., when there are more developers.

5 Discussion

In general, our data suggest that successful projects (i.e., those that successfully built a
community and graduated from incubation) have more members and a correspondingly
large volume of communication, suggesting an active community. As expected, core

Table 7. Mean percentage of messages that include an inclusive pronoun per developer by
project status and developer role

Core Periphery

Graduated 7.6 (3.4) 5.5 (2.2)
Retired 9.3 (5.) 5.3 (3.2)

N = 74. Standard deviations in
parentheses.

Core-Periphery Communication and the Success of FLOSS Projects 53

members contribute more, but overall, the message volume seems almost evenly split
between core and peripheral members, suggesting that both roles play an important part
in projects. These results demonstrate the importance of interaction between and the
shared responsibilities of core and peripheral members.

As expected, core members do display somewhat greater ownership of the project,
as expressed in the use of inclusive pronouns, but counter to our expectations, the use
of inclusive pronouns did not distinguish successful and unsuccessful projects.
A possible explanation for this result is a limitation in our data processing: we deter-
mined developer status (core or periphery) based on committer lists from the project
website collected at the time of analysis. This process does not take into account the
movement of developers from periphery to core (or less frequently, from core to
periphery). It could be that in successful projects, active peripheral members (i.e., those
using more inclusive pronouns) are invited to join the core, thus suppressing the
average for peripheral members.

6 Conclusions

The work presented here can be extended in many ways in future work. First, as noted,
developers may change status during the project. The results would be more accurate if
they took into account the history of when developers became committers to correctly
assign their status over time. Obtaining such historical data is challenging but not
impossible. Second, the ML NLP might be improved with a richer feature set [24],
though as noted, the performance was already as good as would be expected from an
additional human coder. Third, it would be interesting to examine the first few months
of a project for early signs that are predictive of its eventual outcome. Fourth, it might
similarly be possible to predict which peripheral members will become core members
from their individual actions. Fifth, we can consider the effects of additional group
maintenance behaviours from Wei et al. [21]. The Syracuse SOCQA project has had
some success applying ML NLP techniques to these codes, suggesting that this analysis
is feasible. Sixth, it is necessary to consider limits to the hypothesized impacts. For
example, we hypothesized that more communication reflects a more developed com-
munity, but it could be that too much communication creates information overload and
so has a negative impact. Finally, in this paper we have considered only communi-
cation behaviours. A more complete model of project success would take into account
measure of development activities such as code commits or project topic, data for
which are available online.

Despite its limitations, our research offers several advances over prior work. First, it
examines a much large sample of projects. Second, it uses a more objective measure of
project success, namely graduation from the ASF Incubator, as a measure of com-
munity development. Finally, it shows the viability of the application of NLP and ML
techniques to processing large volumes of email messages, incorporating analysis of
the content of messages, not just counts or network structure.

54 K. Crowston and I. Shamshurin

Acknowledgements. We thank the SOCQA Project (Nancy McCracken PI) for access to the
coded sentences for training and Feifei Zhang for checking the coding results. SOCQA was
partially supported by a grant from the US National Science Foundation Socio-computational
Systems (SOCS) program, award 11–11107.

References

1. Amrit, C., van Hillegersberg, J.: Exploring the impact of socio-technical core-periphery
structures in open source software development. J. Inf. Technol. 25(2), 216–229 (2010)

2. Bagozzi, R.P., Dholakia, U.M.: Open source software user communities: a study of
participation in Linux user groups. Manage. Sci. 52(7), 1099–1115 (2006)

3. Barcellini, F., Détienne, F., Burkhardt, J.-M.: A situated approach of roles and participation
in open source software communities. Hum.-Comput. Interact. 29(3), 205–255 (2014)

4. Bonaccorsi, A., Rossi, C.: Why F/OSS can succeed. Res. Policy 32, 1243–1258 (2003)
5. Crowston, K., Wei, K., Howison, J., Wiggins, A.: Free/Libre open source software

development: what we know and what we do not know. ACM Comput. Surv. 44(2), Article
7 (2012)

6. Crowston, K., Howison, J., Annabi, H.: Information systems success in free and open source
software development: theory and measures. Softw. Process Improv. Pract. 11(2), 123–148
(2006)

7. Crowston, K., Howison, J.: Assessing the health of open source communities. IEEE
Comput. 39(5), 89–91 (2006)

8. Crowston, K., Li, Q., Wei, K., Eseryel, U.Y., Howison, J.: Self-organization of teams for
Free/Libre open source software development. Inf. Softw. Technol. 49(6), 564–575 (2007)

9. Crowston, K., Wei, K., Li, Q., Howison, J.: Core and periphery in Free/Libre and open
source software team communications. In: Proceedings of the Hawai’i International
Conference on System System (HICSS-39) (2006)

10. Dahlander, L., O’Mahony, S.: Progressing to the center: coordinating project work. Organ.
Sci. 22(4), 961–979 (2011)

11. Fang, Y., Neufeld, D.: Understanding sustained participation in open source software
projects. J. Manage. Inf. Syst. 25(4), 9–50 (2009)

12. Jensen, C., Scacchi, W.: Role migration and advancement processes in OSSD projects: a
comparative case study. In: Proceedings of the 29th International Conference on Software
Engineering (ICSE), pp. 364–374 (2007)

13. Jergensen, C., Sarma, A., Wagstrom, P.: The onion patch: migration in open source
ecosystems. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, pp. 70–80 (2011)

14. Luthiger Stoll, B.: Fun and software development. In: Proceedings of the First International
Conference on Open Source Systems, Genova, Italy, 11–15 July 2005

15. Park, J.R.: Interpersonal and affective communication in synchronous online discourse. Libr.
Q. 77(2), 133–155 (2007)

16. Park, J.-R.: Linguistic politeness and face-work in computer mediated communication, part
2: an application of the theoretical framework. J. Am. Soc. Inf. Sci. Technol. 59(14), 2199–
2209 (2008)

17. Rullani, F., Haefliger, S.: The periphery on stage: the intra-organizational dynamics in online
communities of creation. Res. Policy 42(4), 941–953 (2013)

Core-Periphery Communication and the Success of FLOSS Projects 55

18. Scialdone, M.J., Heckman, R., Crowston, K.: Group maintenance behaviours of core and
peripheral members of Free/Libre open source software teams. In: Proceedings of the
IFIP WG 2.13 Working Conference on Open Source Systems, Skövde, Sweden, 3–6 June
2009

19. Toral, S.L., Martínez-Torres, M.R., Barrero, Federico: Analysis of virtual communities
supporting OSS projects using social network analysis. Inf. Softw. Technol. 52(3), 296–303
(2010)

20. von Krogh, G., Spaeth, S., Lakhani, K.R.: Community, joining, and specialization in open
source software innovation: a case study. Res. Policy 32(7), 1217–1241 (2003)

21. Wei, K., Crowston, K., Li, N.L., Heckman, R.: Understanding group maintenance behaviour
in Free/Libre open-source software projects: the case of fire and gaim. Inf. Manage. 51(3),
297–309 (2014)

22. Yan, J.L.S., McCracken, N., Crowston, K.: Design of an active learning system with human
correction for content analysis. Paper Presented at the Workshop on Interactive Language
Learning, Visualization, and Interfaces, 52nd Annual Meeting of the Association for
Computational Linguistics, Baltimore, MD, June 2014. http://nlp.stanford.edu/events/
illvi2014/papers/mccracken-illvi2014.pdf

23. Yan, J.L.S., McCracken, N., Crowston, K.: Semi-automatic content analysis of qualitative
data. In: Proceedings of the iConference, Berlin, Germany, 4–7 Mar 2014

24. Yan, J.L.S., McCracken, N., Zhou, S., Crowston, K.: Optimizing features in active machine
learning for complex qualitative content analysis. Paper Presented at the Workshop on
Language Technologies and Computational Social Science, 52nd Annual Meeting of the
Association for Computational Linguistics Baltimore, MD, June 2014

56 K. Crowston and I. Shamshurin

http://nlp.stanford.edu/events/illvi2014/papers/mccracken-illvi2014.pdf
http://nlp.stanford.edu/events/illvi2014/papers/mccracken-illvi2014.pdf

	Core-Periphery Communication and the Success of Free/Libre Open Source Software Projects
	Abstract
	1 Introduction
	2 Theory and Hypotheses
	3 Methods
	3.1 Setting
	3.2 Data Collection and Processing
	3.2.1 Dependent Variable: Success
	3.2.2 Core Vs. Periphery
	3.2.3 Inclusive Pronouns

	4 Findings
	4.1 Membership

	5 Discussion
	6 Conclusions
	Acknowledgements
	References

