
May 2006 113

T he computing world lauds
many Free/Libre and Open
Source Software offerings for
both their reliability and fea-
tures. Successful projects such

as the Apache httpd Web server and
Linux operating system kernel have
made FLOSS a viable option for many
commercial organizations.

While FLOSS code is easy to access,
however, understanding the communi-
ties that build and support the software
can be difficult. Despite accusations
from threatened proprietary vendors,
few continue to believe that open
source programmers are all amateur
teenaged hackers working alone in
their bedrooms. But neither are they
all part of robust, well-known com-
munities like those behind Apache
and Linux.

If you, as an IT professional, are
going to rely on or recommend
FLOSS, or contribute yourself, you
should first research the community of
developers, leaders, and active users
behind the software to decide whether
it’s healthy and suitable for your needs.

LIFE CYCLE AND MOTIVATIONS
Understanding a project’s life cycle

and its participants’ motivations is use-
ful for understanding why a FLOSS
community is important to a project’s
success.

Eric Raymond claims that successful
open source projects usually start in a
“cathedral” before heading into the
“bazaar” (“The Cathedral and the
Bazaar,” First Monday, vol. 3, no. 3,
1998; www.firstmonday.org/issues/
issue3_3/raymond/index.html). An-
thony Senyard and Martin Michlmeyr,
a former Debian project leader, agree,
arguing that a working code base for a
successful FLOSS project is usually
developed alone or by a very small
group before going public (“How to
Have a Successful Free Software
Project,” Proc. 11th Asia-Pacific
Software Eng. Conf., IEEE CS Press,
2004, pp. 84–91).

The founders’ good ideas expressed
in working code facilitate a successful
project’s second phase: a “creative
explosion” in which the product, now
public, develops quickly, gathering

features and capabilities that in turn
attract additional developers and
users. What Perl founder Larry Wall
calls “learning in public” can be an
exhilarating, if difficult, time early in
a project’s life cycle.

Many researchers have examined
FLOSS participants’ motivations, but
these studies often focused on small
samples of atypical projects.

More broad-based research by
Rishab A. Ghosh and colleagues
(“Free/Libre and Open Source Soft-
ware: Survey and Study,” summary
report, Workshop on Advancing the
Research Agenda on Free/Open Source
Software, Int’l Institute of Infonomics,
Univ. of Maastricht, 2002, www.info-
nomics.nl/FLOSS/report/workshopre-
port.htm) and Karim Lakhani and
Robert G. Wolf (“Why Hackers Do
What They Do: Understanding Moti-
vation Efforts in Free/Open Source
Software Projects,” working paper
4425-03, MIT Sloan School of Man-
agement, 2003, http://opensource.mit.
edu/papers/lakhaniwolf.pdf) indicates
that motivations are quite diverse
and include, in decreasing order of
relevance,

• intellectual engagement;
• knowledge sharing;
• the product itself; and
• ideology, reputation, and commu-

nity obligation.

Although reputation is low on the
list, its importance rises with the
length of participant involvement.
Projects that have an atmosphere of
exploration and intellectual engage-
ment, especially early in their life, are
most likely to attract the active user
community needed for future success.
Also important in attracting good
developers is a code base that solves a
real need.

ONE SHAPE, MANY SIZES
Another important barometer of a

FLOSS community’s health is its shape
and size. Healthy communities are
generally onion-shaped, as shown in
Figure 1 on the next page, with distinct
roles for developers, leaders, and users.

Assessing the
Health of a
FLOSS Community
Kevin Crowston
and James Howison
Syracuse University

I T S Y S T E M S P E R S P E C T I V E S

Before contributing to a free or
open source software project,
understand the developers,
leaders, and active users behind it.

114 Computer

make decisions without seeking much
input. This autocratic style isn’t nec-
essarily bad if the decisions have com-
munity support, but, taken to an
extreme, it can inhibit contributions
needed for further growth.

Transitioning project leadership
from the founders to others can be
quite difficult because, even if they’re
no longer actually involved, the
founders’ word still carries inordinate
weight. Not surprisingly, change at the
center of FLOSS projects is uncommon
(J. Howison, K. Inoue, and K.
Crowston, “Social Dynamics of Free
and Open Source Team Communi-
cations,” Proc. 2nd Int’l Conf. Open
Source Software, IFIP, 2006, http://
floss.syr.edu/publications/howison_
dynamic_sna_intoss_ifip_short.pdf).

It’s a positive sign, therefore, if a
FLOSS community has successfully
managed such a transition. Regardless
of who is at the core, however, it’s
worth asking, could the community
recover if the current leadership left?
Who in the wings could step forward?

Codevelopers
Surrounding the core developers are

the codevelopers, participants who
write code but have not yet earned
commit access. These individuals typ-
ically submit patches for review by
core developers before inclusion in the
code base and, by displaying interest
and ability, can move from the periph-
ery to the core.

Core developers
At the onion’s center are the core

developers, those with commit privi-
leges on the source code repository
earned through a strong record of
contribution to the project. This
group can be quite small—three to 10
is adequate for most projects. As every
software developer knows, there’s a
limit to the number of people who can
participate intensively before too
much time is spent getting in synch.

Our research shows that less than 1
percent of the more than 100,000 pro-
jects listed on SourceForge have ever
exceeded 10 developers (K. Crowston,
J. Howison, and H. Annabi, “Infor-
mation Systems Success in Free and
Open Source Software Development:
Theory and Measures,” Software
Process: Improvement and Practice, in
press, http://floss.syr.edu/publications/
crowston2006flossSuccessSPIPpre-print.
pdf). Even acknowledging the numer-
ous single-person and dead Source-
Forge projects, it’s clear that projects
with hundreds of developers, such as
the Linux kernel, Mozilla, and Debian,
are the exception rather than the rule.

Project leaders
Also in the core are the project

leaders, often the founders. A strong
leader or leadership group can carry a
project through its turbulent inception
to maturity and stability. Contrary to
the FLOSS mythology of democratic
open project teams, many leaders

This review process enhances code
quality by adding extra pairs of eyes,
but it can also be time-consuming.
Consequently, FLOSS processes emerge
that conserve developers’ time but seem
wasteful of the codevelopers’. What’s
important is that, beyond an initial cre-
ative explosion, development grows
steadily over time, and an established
social structure emerges that provides
a clear vision and has a deep under-
standing of the code.

Active users
Another sign of a healthy FLOSS

community is a wide circle of active
users. These persons contribute by
testing new releases, posting bug
reports, writing documentation, and,
most importantly, insulating core
developers from a barrage of set-up,
configuration, and build questions
from passive users—those who use the
code without contributing themselves.

Active users protect developers from
both burnout and possibly frustrated
new users. Figure 2 shows a plot of
interactions relating to bug fixing in
the SquirrelMail project (www.squir-
relmail.org), with active users forming
a natural buffer between developers
and peripheral users. An ideal active
user buffer is led by one or two longer-
term participants supported by a ro-
tating group of users of varying
experience.

DEVELOPMENT PROCESSES
Few if any FLOSS projects are likely

to apply for ISO 9000 process certifi-
cation anytime soon, but that doesn’t
mean they don’t have well-accepted
processes. However, these are rarely
formally documented, and under-
standing what Walt Sccachi calls “in-
formalisms” can take time (“Under-
standing the Requirements for
Developing Open Source Software
Systems,” IEE Proceedings—Software,
vol. 149, no. 1, 2002, pp. 24-39).

Even very successful open source
projects often lack detailed roadmaps,
explicit work assignments, or feature
request prioritizations. A key aim of
making proprietary software pro-
cesses explicit is to ensure the efficient

I T S Y S T E M S P E R S P E C T I V E S

Core developers

Codevelopers

Active users

Passive users

Founder

Release
coordinator

Figure 1. A healthy FLOSS community is onion-shaped, with distinct roles for developers,
leaders, and users.

use of a fixed pool of resources, but
FLOSS projects don’t face such fixed
pools, either in the number of partic-
ipants or in the amount of time each
one can devote.

For many developers, organizing for
fun can be more important than orga-
nizing for efficiency. In fact, duplica-
tion of effort could be a positive sign
that the project can attract resources
and is in a position to choose the best
contributions. On the other hand, a
formalized system for prioritizing
security issues clearly benefits some
applications. And if the processes are
discussed, it’s important that these dis-
cussions regularly end in action that
lets people get back to work rather
than in an exhausted stalemate.

Certain essential processes, such as
providing and maintaining reposito-
ries and download sites, are often
both difficult and laborious; these
have a high burn-out rate because
many participants are driven by intel-
lectual curiosity rather than a service
mentality. Such functions should be
farmed out to an entity with financial
and operational resources, or at least
formally rotated among participants.
Hosting providers such as Source-
Forge, Savannah, GForge, and Ruby-
Forge do the FLOSS ecosystem a
great service in this regard, as do
long-term partnerships with com-
mercial ventures.

Managing releases is another oner-
ous task. Hassling volunteers and col-
laborators to stop being creative and
focus on delivering and testing a
releasable version isn’t particularly
enjoyable. Ideally, a healthy FLOSS
community recognizes and explicitly
addresses this issue, perhaps through
a rotating position (like Perl’s pump-
king) or a time-based release strategy.

I n considering a FLOSS project,
make it a point to understand the
community as you familiarize your-

self with the code. Subscribe to and
skim mailing lists, find the list archives,
and examine the project’s Web site. If
the project has an Internet relay chat
channel, spend some time there—

IRC’s informality can reveal whether
participants actually like one another.

Many quantitative resources can
reveal how a community has evolved
over time. For example, FLOSSmole
(http://ossmole.sourceforge.net) pro-
vides public access to data collected
from SourceForge, freshmeat, and
RubyForge, as well as tools for graph-
ical analysis of community structure.
CVSAnalY (http://cvsanaly.tigris.org)
offers utilities to extract data on many
CVS and Subversion projects, such as
the number of contributors and their
rate of contribution. The Business
Readiness Rating project (http://open-
brr.org) is developing a more formal
methodology to assess FLOSS pro-
jects.

If your assessment leaves you feeling
that the community isn’t right for you,
be prepared to consider alternatives,
no matter how attractive the code is.
Trying to change an existing commu-
nity is likely to end in frustration and
undermine the reasons you chose
FLOSS in the first place. However,
while a rejection of your enthusiastic
contributions can seem dictatorial and
rude, it can also demonstrate a long-

term, cohesive vision—a FLOSS com-
munity at its best. ■

This research was partially supported
by NSF Grants 03–41475, 04–14468,
and 05–27457. Any opinions, find-
ings, and conclusions or recommen-
dations expressed in this material are
those of the authors and do not neces-
sarily reflect the views of the National
Science Foundation.

Kevin Crowston is an associate profes-
sor at Syracuse University’s School of
Information Studies. Contact him at
crowston@syr.edu.

James Howison is a doctoral student at
Syracuse University’s School of Infor-
mation Studies. Contact him at james@
howison.name.

May 2006 115

I T S Y S T E M S P E R S P E C T I V E S

Figure 2. Sociogram for fixing bugs in the SquirrelMail project. Active members—those
with multiple interactions—form a buffer between developers and peripheral users.

Editor: Richard G. Mathieu, Dept. of
Computer Information Systems and
Management Science, College of
Business, James Madison Univ.,
Harrisonburg, VA; mathierg@jmu.edu

