
Coordination without discussion? Socio-technical congruence and Stigmergy in
Free and Open Source Software projects

Francesco Bolici
Cassino University

Cassino Italy
francesco.bolici@eco.unicas.it

James Howison
Carnegie Mellon University

Pittsburgh PA USA
jhowison@cs.cmu.edu

Kevin Crowston
Syracuse University
Syracuse NY USA
crowston@syr.edu

Abstract

The idea of congruence between the structure of techni-
cal and work dependencies has been demonstrated in com-
mercial software development but has not been explored in
detail in free and open source software (FLOSS) develop-
ment. Previous work identified 103 task episodes, selected
from two FLOSS projects, and found that 83 were per-
formed by single actors. We analyze the 20 tasks with mul-
tiple actors and find that 14 were performed in the absense
of any discursive communication between developers. The
qualitative analysis of this evidence shows the paradox that,
even if the developers do not seem to communicate explic-
itly, the software is nonetheless built as result of a collective
effort, apparently without central coordination. In answer
to this puzzle, this paper turns to the concept of stygmergic
coordination as possible explanation. Stigmergy explains
how actors can affect the behavior of other members of the
community through the traces that their activities leave in
shared artifacts. Such collaboration has implications for
the socio-technical congruence analysis and the design of
collaborative systems.

1. Introduction

The idea of socio-technical congruence as a predictor
of coordination success in software development, as in-
troduced by Cataldo et al. [4, 3], is powerful and timely,
particularly the matrix comparison formalization. The ap-
proach argues that the task of software development gener-
ates dependencies that are managed through a set of social
and organizational structures that allow developers to coor-
dinate their actions, through discursive (i.e., conversation-
like) communication. Congruence means that the available
coordination capacity from the communications matches
the coordination needs based on the structure of the soft-
ware.

While the perspective has provided insight into the orga-
nization of software development, the focus of research has
been on conventional software development (with [27] as a
recent exception). In the mean time, free/libre open source
software (FLOSS) development has grown as an alternative
approach. FLOSS is software developed in an open fash-
ion, meaning that the source code is available for inspec-
tion and reuse. Often development is undertaken by a dis-
tributed group of volunteers, a mode sometimes referred to
as “community” open source. Characterized by a globally
distributed developer force and a rapid and reliable software
development process, effective FLOSS development teams
somehow profit from the advantages and overcome the chal-
lenges of distributed work [1]. Traditional organizations
have taken note of these successes and have sought ways of
leveraging FLOSS methods for their own distributed teams.
However, we still do not know the generalizability of these
approaches, in particular how socio-technical congruence
plays out in such settings.

In order to provide a contribution to this question, we
have studied communication in the FLOSS projects. We re-
port on an empirical study, drawing on data from free and
open source software projects, which suggests coordination
even in the absence of discursive communication. As a re-
sult of this finding, we explore a challenge to the usual fram-
ing of socio-technical congruence by arguing that coordina-
tion can occur more directly through the code itself, par-
ticularly as that code is dynamically constructed in a code
repository. We provide a theoretical argument for this view
drawing on literature from organizational studies (itself in-
spired by biology). We conclude by examining the limita-
tions and implications of our approach and study.

2. Literature review

Consideration of socio-technical congruence has a long
history. The basic notion was first described as Conway’s
law [5], which states that the structure of a product mirrors



the structure of the organization that creates it. Researchers
following this path have examined the impact of alignment
between the coordination requirements and mechanisms on
software development productivity [4, 3]. It has been ar-
gued that organizations will be successful when there is a
congruence between the structure of technical dependencies
as a source of coordination requirements and the capability
to coordinate, as affected by the organization’s communica-
tion capabilities and structures (with the capability meeting
or exceeding the requirement).

One implication of this work is that reducing the depen-
dencies between the different components of the system can
facilitate development by reducing the need for coordina-
tion [8]. Modularity is one of the most important princi-
ples in software engineering thought to reduce the com-
plexity of software development by creating a set of rel-
atively independent modules [17, 18]. However modular-
ity principles can reduce but not completely eliminate the
coordination needs among modules and among the activ-
ities of a single module. Since eliminating coordination
needs is rarely completely possible other work has focused
on increasing coordination capabilities and several studies
have found that the communication between the actors is
correlated to the ability to coordinate their work activities
(e.g. [12]). This consideration has been validated and ac-
cepted in several contexts, as in the product design litera-
ture, where the communication among the engineers is con-
sidered a needed requirement for assuring coordination in
product design decision making [5]. Based on this review,
in this study we sought to examine situations where depen-
dencies would seem to call for discursive communication
(assumed to be supporting coordination) in a free and open
source software development team, in order to assess the
role of socio-technical congruence perspective in this do-
main.

3. Data and Method

In this section we describe our data collection and anal-
ysis approach. Our goal was to describe the degree of com-
munication in software development teams. We describe in
turn the setting for our study, the particular projects studied,
the data collected and our approach to data analysis.

3.1. Setting

Studies of socio-technical congruence in commercial
software development have drawn on evidence regarding
the progress of software development contained in software
repositories. As development proceeds, evidence of the
processes and interactions between tasks and participants
is stored in repositories such as email lists, issue trackers,
source code management systems and so on. A possible

confound to this approach is that communication for coordi-
nation might be carried out face-to-face in meetings, offices
and corridors, and as such would be unlikely to be recorded
in software repositories. Such uncollected communication
would be problematic for an inquiry into the nature of co-
ordination, and so has been proxied by factors such as team
membership or co-location.

In constrast many open source development teams have
the characteristic that their interactions are almost entirely
through archived venues (though not all, e.g. [6]). Those
that do can be described as community-based, without a
shared geograpical center and where collaboration is en-
tirely through computer-mediated communications. Al-
though it is somewhat dependent on individual projects, the
bulk of such communications are recorded in archives, both
for convenience but also in part in fulfillment of an ideol-
ogy of openness and transparency. The community-based
FLOSS environment, however, also brings with it additional
organizational features, such as largely volunteer partici-
pants and a lack of a formal, shared organizational exis-
tence. We consider the implications of these features in the
discussion below.

3.2. The Dataset

For data, we draw on a dataset created by Howison [14]
in his study of collaboration patterns in FLOSS develop-
ment. This dataset forms the basis of the analysis presented
in this paper and so its preparation is reported in some de-
tail.

That study gathered data from two comparable FLOSS
projects, Fire and Gaim. The projects were selected for
their similarity, rather than their differences. Both projects
were relatively successful community-based projects with-
out a geographical center; neither project conducted confer-
ences or ‘sprints’ and there is no reason to believe that any
participants were co-located. Both projects produce similar
software, namely multi-protocol IM clients, and, at a high-
level at least, share an architecture of core GUI with library
based protocol implementation. Based on these similarities
and on the ideas of socio-technical congruence we antici-
pated finding similar patterns of communication in the two
groups.

Howison collected as much data on development in these
two projects as possible, drawing on publicly available data
sharing repositories for research, including FLOSSMole
and the Notre Dame SRDA [15, 9, 11]. For each project he
collected 1) source code repository data, including log mes-
sages; 2) Release data, including Release Notes; 3) Mail-
ing lists and Forums; 4) Issue Tracker discussions. The
dataset does not include data on IRC or Instant messag-
ing between participants, nor on email sent between par-
ticipants privately, and limitations deriving from this are re-



ported below.
The goal of the analysis was to identify the work done to

carry out project development tasks, and more specifically,
the pattern of communication leading to each. From the
available data, Howison reconstructed the task-level pro-
cesses leading to new features. Unlike software devel-
opment organizations which implement formal processes,
such as those assessed in the SEI’s Capability Maturity
Model certification [23], there is no reason to expect that
participants will record which archived evidence pertains
to which tasks undertaken by the teams. Therefore Howi-
son manually inspected the archives and re-organized them
to understand the tasks and the contributions made to them
by developers. This is time-consuming and laborious but
provides stronger validation and understanding of the ma-
terial than automated heuristics. For reasons of practicality,
[14] restricted its inquiry to two inter-release periods, cho-
sen while both projects were highly active and successful
and each around two months in length (Fire: 56 days, Gaim
61 days).

Howison defines four concepts we will use in the dis-
cussion below: 1) Task Outcome: A change to the shared
output of the project. 2) Action: Work which contributes to
a Task Outcome. 3) Task: The sequence of Actions con-
tributing to a particular Task Outcome. 4) Participant: A
distinct individual involved with the project. Therefore it is
possible to speak of a Task as a set of Actions leading to a
particular Task Outcome.

The method of reconstruction in [14] was as follows.
The projects record their understanding of their Tasks in
two main locations: the release notes and the README
file in the source code repository and these formed the basis
for re-organization, providing 60% and 30% respectively,
of the 103 Task Outcomes identified; the remainder were
identified by reading code repository log messages which
did not make it into the README or Release Notes. These
Task Outcomes formed the basis for a free text search of
the full data collection for the release period (and extending
outside the release period for Tracker items). Relevant doc-
uments were assigned to tasks to which they seemed to con-
tribute, and documents could be assigned to more than one
task. The documents were re-arranged in chronological or-
der and the Actions for which they provided evidence were
extracted. Individual documents could provide evidence of
more than one Action (if, for example, they thanked a con-
tributor for a patch that was being checked in on their be-
half) or conversely multiple documents could be merged
into single Actions, as was common for code repository
check-ins very nearby in time. During this process the var-
ious identifiers used by Participants for different archives
(e.g. Sourceforge username vs Real Name/Email address
combination) were examined and merged.

The actions so identified were then classified according

to their type of contribution towards the task outcome, us-
ing a simple scheme: 1) Production work 2) Review Work
4) Supporting Work and 4) Documentation work. Produc-
tion work was that work which directly produced changes
to the shared output of the project, almost always involving
changes to the source code in the repository. Review work
was assessed when participants checked code in on be-
half of others, or provided critique and feedback of other’s
check-ins. Supporting work included both user requests and
bug reports, and also developer support such as asking or
providing help solving programming issues or explaining
parts of the code to assist other developers.

Through the analysis described above, Howison [14]
identified 103 episodes of work leading to new features or
changes in the code (Tasks), comprising a total of 786 Ac-
tions. For the purposes of this study, the Tasks were clas-
sified according to the number of unique Participants who
performed Production Work for the Task. Strikingly, of the
103 Tasks, there were 83 in which only a single participant
undertook production work, which we called Solo Produc-
tion Work and only 20 in which more than one did, called
Co-Production Work (10 in Fire and 10 in GAIM, exam-
ples are available in ). In other words, only a fraction of the
Tasks are ones in which the software development activities
have been accomplished through collaboration between two
or more code-writers.

3.3. Data Analysis

We took this dataset as our starting point for our analy-
sis of socio-technical congruence. While there are likely
dependencies between tasks, the co-work tasks are those
where more than one participant undertook production
work. Therefore they are most likely to have the clearest
interdependencies and therefore the most pressing coordi-
nation requirements. Participants are most likely to need to
actively coordinate and to do so via communication, either
in advance to plan roles or during work since the work is
continuing. We therefore took these as the critical cases
and examined them further for coordinating communica-
tion. Specifically all the actions in the co-work tasks were
examined for evidence of communication between the pro-
grammers contributing to the task outcome.

We expected, following socio-technical congruence ap-
proach, to find intense communication exchange among de-
velopers that cooperate in a specific single task. We coded
the 20 episodes for the presence of direct communication
about the tasks to accomplish, the plan of the activities or
any other form of management of dependencies between
activities.



4. Findings

We report both quantitative and qualitative results. The
quantitative results are presented in Table 1 and illustrative
qualitative results are reported below that. Overall we were
only able to find discursive communication between the two
developers involved in the co-work tasks in 6 of the 20 tasks,
in the remaining 14 tasks there was no evidence of discur-
sive communication. In other words, not only is joint work
on Tasks relatively uncommon (only 20 of 103 tasks), even
in the cases were multiple developers do collaborate, they
often do so without any discursive communication.

Table 1. Co-work tasks with direct communi-
cation for coordination

Fire 32 3 21 30 36 15 1 3 2 12 4
! ! - ! ! - - - - -

Gaim 5 37 43 27 8 2 15 7 2 34 28
- - - - ! - - - ! -

Analyzing the data qualitatively enables us to provide a
selection of tasks that illustrate the presence or absence of
direct communication for coordinating developers’ activity.
A (rare) example of direct communication between devel-
opers about the next tasks to perform can be found in Fire
task 32 3, where two actors (gbooker and jtownsend) co-
develop a new feature (AIM buddy blocking). gbooker, who
seems to drive the implementation of this specific feature,
commits new code together with an SVN log message that
reads “... Once we get the notification change about the pref
change for allow those not in buddy list, we will be good
to go!!”. Four hours later, jtownsend posts new code that
“add[s] notification of block non-buddies pref changing”.
Analyzing the communication and then the changes in the
code, and identifying gbooker as a key player in the devel-
opment of the whole project, it becomes clear that gbooker’s
statement (“Once we get the notification ...”) was in fact a
polite request for work and indicates direct, discursive com-
munication to resolve a dependency in the flow of his work.

A second of the six tasks that include direct communica-
tion is Fire task 21, in which gbooker emails the user list in
reply to a user’s request for information, asking for support
from the community and proposing a set of features to be
developed. After a day, jtownsend replies pointing out his
idea about the merging of two components and proposing
a common plan for the subsequent activities: “[the merg-
ing] could happen within the next two week possibly. The
main issue is I want to add MSN file send, and improve the
interface consistency with the Yahoo file receive, but these
things should be done with the last file transfer infrastruc-

ture that Graham [gbooker] has in the branch”. Through di-
rect communication (public email exchange in response to
a user request) the developers are negotiating and deciding
their next steps.

In the co-work tasks for the Gaim project we found
only two in which the activity was planned or coordinated
through direct communication. Task 34 is one of these
cases: chipx86, fixing a bug in a patch released by seane-
gan, writes in the SVN “... We should probably remove it
from configure.in (the line with src/protocols/icqMakefile in
AC OUTPUT()). Then we can remove it from here”, which
in the context of the task is de facto and quite indirect plan-
ning for the next actions needed to complete the task.

The above examples represent a small fraction of the to-
tal work analyzed. More often (14 of 20) we identified tasks
in which coordination is achieved apparently without dis-
cursive communication. An example of Gaim task 5, which
begins in May when mallman finds and reports a bug (in the
“proxy string”) and he proposes possible changes for ad-
dressing the problem. In August, seanegan uploads a patch
apparently written by eblanton that fixes the reported bug.
There is no evidence in the archives of any discursive com-
munication between the developers about this task.

Similarly, in Gaim task 37, we found an absence of di-
rect communication when darkrain, without any previous
communication, posts a patch for fixing two bugs. After
few days, and with out any intervening discussion, chipx86
posts a new patch that solves the same problems in a more
effective way writing in the SVN “This looks much better”.
It seems that other developers agreed without discussion,
because after few days seanegan thanks him with the stan-
dard and brief sentence “chipx86 fixed it” and then closed
the bug report.

We have also found a number of tasks in which a devel-
oper uploads a patch and then in the SVN thanks some other
developer for the work. This is the case of Gaim task 27 in
which seanegan writes “... Ari and Chip both sent some
patches to make things work a bitter better in GTK 2, and
Etan rewrote the notify plugin so it’s really cool no! Thanks
guys!”. This is interesting because we have no evidence of
direct communication between the developers performing
those tasks.

Another consideration that emerges from the qualitative
data analysis is that developers often seem to prefer to point
directly to the code rather than explain or describe what they
have done. In Fire task 30 the main activity is the develop-
ment of a file transfer infrastructure, a task mainly realized
by gbooker with the collaboration of one other developer.
During a period of 25 days, these developers change the
code 31 times (mainly bug fixing and file transfer imple-
mentation) without any trace of discursive communication
between them being recorded in the public archives. Suit-
ably the description in the SVN is very simple and begins



with this line: “Way too much to describe here...”.

5. Discussion

We investigated the communication pattern in free and
open source software development activities in order to an-
alyze its congruence to the evolution of the code. Sur-
prisingly, there is little to compare to assess congruence.
The data from these two projects presented in [14] suggests
that contrary to expectations, software development work
in FLOSS teams is highly individual. We were only able to
identify 20 (out of 103) tasks in which developers worked
together. However, even in these tasks, when examined in
detail, the majority (14 of 20) have no discursive communi-
cation at all between the collaborators, despite the face that
the work was completed and incorporated into the software.

This section considers four alternative explanations for
this finding. The first three are 1) missing data, 2) a lack
of dependencies and 3) low quality work. The fourth we
develop in more detail, to develop an alternative theory
of communication through artifacts and the observation of
other’s work.

1. Missing data. A first possible explanation for our find-
ing is that the communication did happen, but was
not captured in our data. Indeed, we have some evi-
dence of “ghost communications” in the dataset, mean-
ing mentions of communications that apparently hap-
pened but that were not captured in the data collection.
However, these mentions cluster in specific topical ar-
eas, such as translations (e.g., a developer thanking a
translator for his or her work) rather than being a wide
spread phenomenon. There is the possibility that the
developers did undertake some discussion via IRC and
instant messaging (the topic of the projects), and we
do not have access to these hypothetical communica-
tions. However the qualitative analysis of the episodes
seems to suggest that the use of alternative commu-
nication tools should not be extensive, since they are
not referred to or even mentioned in other communi-
cations.

2. No Dependencies A second possible explanation is that
there are actually no dependencies between the pro-
grammers’ work and so no need to communicate (i.e.,
there is congruence between the needs and the low
level of communication). However, since the various
pieces of software code being developed by the various
developers must work together, we consider this expla-
nation unlikely, although it is possible that the work is
trivially combinable. It is also more difficult to support
this assumption when more developers collaborate for
the production of a specific patch or for solving a bug.

3. Low quality work A third possible explanation is that
coordination requirements are present but unmet, as
suggested by the low level of communication. Such
a situation would be expected to lead to a low quality
outcome, given the hypothesis about socio-technical
congruence. Since we have no evidence regarding
quality, such as a count of defects or re-work, this
explanation can not be definitively ruled out. On the
other hand, both of these pieces of software were rel-
atively widely adopted, at least in the period studied
and by the standards of FLOSS projects, which argues
against this explanation.

While these three explanations cannot be ruled out by
the current study, we suggest that none of them is suffi-
cient to adequately explain the findings presented above.
This leaves a puzzle: how are the developers in the FLOSS
projects studied accomplishing their coordination when
their discursive communication appears to be completely
absent? Or put another way, if discursive communication
is truly absent, but work is coordinated, what might explain
this?

5.1. Implicit Coordination and Stigmergy

As an alternative perspective for explaining our empiri-
cal findings we turn to the concepts of implicit coordination
and stigmergy. We consider as implicit coordination that
reached without discursive communication, shared plans or
even previous commitment among the actors. In detail we
are looking for a perspective that can explain the absence of
direct communication between actors that nonetheless are
able to collectively accomplish the production of a complex
artifact (the software).

This contrast between the individual and the collective
level has been studied for a long time in biology where it
has been called the coordination paradox. Looking at the
behavior of a group of social insects, they seem to be co-
operating in an organized and coordinated way; yet at each
individual level, they seem to be working alone as if they do
not have any interaction with the other actors of the commu-
nity.

In order to address and to explain this coordination
paradox Grassé, writing in 1959 in [10], defined the con-
cept of stigmergy as “a class of mechanisms that medi-
ated animal-animal interactions”. Heylighen discussed stig-
mergy in open source software development in very general
terms, presenting a definition, “A process is stigmergic if
the work (‘ergon’ in Greek) done by one agent provides a
stimulus (‘stigma’) that entices other agents to continue the
job.” [13]. Stigmergy provides an explanation to the coordi-
nation paradox above: each insect (ant, bee, etc.) influences
the behaviour of other insects by indirect communication



through the use of artefacts (e.g. chemical traces or build-
ing material for the nest). The action of an actor produces
changes in the environment, and these changes can provide
a stimulus for other actors, who respond with another ac-
tion, triggered by the previous one, and so on.

Thus the traces left by an individual, or the result of its
work, can act as a direct source of stimuli for others. Con-
sidering the examples of the ants, this process allows the
building of complex structures without central coordination
and direct communication. Stigmergic rationalization of so-
cial insect behaviour explains how simple agents, without
deliberation, communication or central coordination, can
contribute to a common result simply responding to stim-
uli provided by other individuals and by the environment.

Stygmergic coordination thus gives an alternative expla-
nation for our empirical findings. For example Gaim task 5,
described above, can now be interpreted though this lens as
a stygmergic coordination process where the action of mall-
man (upoading a patch) modifies the environment of the
project (allowing new improvement or showing new criti-
cal points), acting as a stimuli for the following contribution
by eblanton (new patch). The absence of communication is
thus motivated by the fact that all the information needed by
the developers was already embedded in the traces of their
work (patches).

While we do not suggest that human activities are equiv-
alent to those of insects, we do aim to examine to what ex-
tent stigmergic principles can contribute to explaining hu-
man collaboration and coordination understanding. Con-
sidering socio-technical congruence and coordination in
FLOSS projects, we can now identify three ways in which
stigmergic coordination helps:

1. coordination can be reached through indirect commu-
nication among actors;

2. stigmergic interaction is always mediated by artefacts
or other traces left by the actors in the environment;

3. the environment and the artefact have an active role, as
mediators, nexus of stimuli and ruler of interactions.

As in the biological examples, any artifact uploaded to
the project’s web site (changes in the lines of code, new or
revised document, email, thread post, etc.) is an alteration in
the community environment; it is a trace left by other mem-
bers. When a member of the community discovers some-
thing in his virtual environment (a bug, an error, a possible
new feature) he may try to address the issue (and post the
solution, thus leaving a new trace of his activity) or wait un-
til someone else finds a solution. Thus not only is there the
possibility of coordinating action through stigmergy, but of
motivating action as well.

Stigmergic principles have already been applied to hu-
man actions, especially in the context of cognitive sci-

ence [26] and of computer science, in the field of multi-
agent systems simulation in particular [20]. In our litera-
ture review we discovered very few and specific attempts to
use the stigmergic principles in the study of software devel-
opment in general or FLOSS specifically. Heylighen [13]
focused on the theoretical analysis of the open access de-
velopment as alternative approach to both the centralized
planning and the “invisible hand” of market models. Still in
the field of simulation, Robles et al in [21] tried to simulate
the evolution of FLOSS projects using stigmergic principles
for their agents. Elliot, writing in [7], connected stigmergy
with open source software development but argued that it
would only play a role for groupwork involving larger num-
bers (which he placed at over 25 people).

5.2. Trading Zones, Boundary Objects and
the “field of work”

Introducing the concept of stigmergy we have argued
that coordination is possible also in the absence of com-
munication, when the coordination between actors is man-
aged by reaction to artifacts (in progress or complete)
and traces left by other members of the communities in
a shared workspace. Similar coordination structures have
recently been addressed in the management literature, par-
ticularly focused on the interactions among different com-
munities. The concepts of trading zones, introduced by
Kellog et al. in [16] and of community of practices by
Wenger in [28] have been developed to address the problem
of crossing the boundaries of communities assuring inter-
organizational coordination. In separate but similar work
in the field of Computer Supported Collaborative Work by
Schmidt and Simone in [22] introduce the concept of coor-
dination through observed changes in the “field of work”.

A trading zone is a “coordination structure that facilitates
cross-boundary coordination in fast paced, temporary, and
volatile conditions”, and thus “[e]ngaging in a trading zone
suggests that diverse groups can interact across boundaries
by agreeing on the general procedures of exchange even
while they may have different local interpretations of the
object being exchanged ...” [16, p. 39]. The researchers
identified three practices that enact the trading zone: dis-
play (to make the work visible), representation (to express
the work in a particular form that can be used by others) and
assembly (to refer to, reuse, revise and align the work prod-
ucts of other communities in the construction of their own
independent products). The trading zone concept is very
useful because it focus attention on the workspaces and the
practices actors perform in those workspaces.

Our empirical evidence shows that the FLOSS projects
are characterized by the three characteristics typical of the
trading zones: 1. display: the code and the communication
between the members of the community are transparent and



accessible by everyone; 2. representation: the programming
language used in the project and the norm and rules adopted
by the FLOSS community will facilitate the correct under-
standing and use of the code; 3. assembly: in our empirical
evidences, as well as [14], the developers seem to add lines
of code on top of lines of code uploaded by others, as in the
biological metaphor termites add material to build their nest
without direct coordination.

In order to have another perspective on the relationship
between the artifacts and the collective activities in a com-
munity we can also refer to the concept of the Boundary Ob-
jects, Star and colleagues [24, 25] as well as the Community
of Practice approach [28]. Boundary objects are those arti-
facts that allow the coordination of the perspectives of dif-
ferent communities [24]. Inter-group connections created
in this way are “reified” since they embody in objects (real
or reified) ideas and concepts that can be shared by groups
that do not normally use the shared practices. Boundary ob-
jects enable conversation by presenting a reified represen-
tation of practices without enforcing a unique interpretation
of meanings. This is especially necessary when developing
software systems, since it is desirable that developers and
users, while learning from each other, still maintain their
own separate understanding of their own practices.

Star [24] and Wenger [28, p. 55] indicate four quali-
ties for objects to work as boundary bridges. 1) modular-
ity: different perspectives could be combined inside the ob-
ject in a modular way (each perspective could add an ele-
ment to the common object). 2) abstraction: only some—
and not all—the characteristics of the different experiences
are represented in the object. Real differences are needed
to make the object interesting for a specific purpose, but a
common ground is needed because otherwise the object will
not be understood at all by one of the parties. 3) adaptation:
boundary objects could be used in a variety of different ac-
tivities. 4) standardization: the intangible resources in the
object are formalized in a standardized structure, so each
group knows how to use the object in its own context. For
our purposes the concept of boundary object is particularly
interesting because it provides a detailed characterization
of those artifacts that are considered the trace of the actors’
work in the stigmergic coordination view. Considering Task
5 of Gaim, we can see how stigmergic coordination is real-
ized between mallman and eblanton through particular ar-
tifacts (the patches in this case) that can be characterized
as boundary objects, since their role is to be a nexus around
and upon which developers can negotiate and construct new
meaning and layers of work.

We have pointed out how the trading zone and bound-
ary object concepts fit with our empirical evidence. How-
ever, there is also an important difference that we have to
recall. The FLOSS projects that we have examined are set-
tled in a single community characterized by strong iden-

tity and shared values and norms. By contrast the boundary
object and trading zone work had considered environments
with differentiated professional identities and values. Our
work, therefore, expands the applicability of these concepts
to coordination within a single community, rather than in
the interaction between different communities.

Another approach based on indirect coordination was de-
veloped in the field of Computer Supported Collaborative
Work by Schmidt and Simone in 1996, who refer to co-
ordination through the “field of work” [22]. This concept
pays attention to the workspace and its changes as indirect
interaction between actors and goes so far as to argue that
“cooperative work is constituted by the interdependence of
multiple actors who, in their individual activities, in chang-
ing the state of their individual field of work, also change
the state of the field of work of others and who thus interact
through changing the state of a common field of work” [22,
p 158].

6. Conclusions

This paper has examined the idea of socio-technical con-
gruence for coordination in the FLOSS context. During our
initial study we found surprisingly little evidence of discur-
sive communication being undertaken to coordinate actions
of developers, even when only viewing tasks with more than
a single participant contributing code. As a solution to this
puzzle we suggest that developers are coordinating implic-
itly, through the code repositories. We suggest that this is
a form of stigmergy and flesh this out with reference to the
literature on trading zones and boundary objects.

The data presented in this paper comes from fully dis-
tributed, volunteer FLOSS projects and this context faces
limitations in generalizing, both across FLOSS projects and
to other forms of software development. Howison, in [14],
argues that the high incidence of individual work is driven
by a co-evolution of this way of working with the moti-
vations, media and organizational circumstances, such as
freedom from deadlines, faced by FLOSS projects. He
notes that this is a slow and potentially unreliable manner
in which to develop software. Similar observations apply to
the work reported here: it may be that the developers under-
take stigmergic coordination primarily because they do not
have access to suitable discursive communication channels
or temporal overlap, and that the lack of such channels not
only slows the work down but decreases its quality. Cer-
tainly software development in commercial environments
does face deadlines and does have the resources to pro-
mote richer discursive interactions, including face to face
meetings. On the other hand, even in commercial software
development, code repositories, and their history of small
changes, provide a high-context way and low overhead way
to communicate about code that is perhaps even more suit-



able than discursive emails or face to face discussion.

6.1. Practical implications

Stigmergic coordination through software repositories
raises two important implications. The first is a challenge
to the current formulation of socio-technical congruence
in [3, 4]. The second explores recommendations flowing
from understanding source code repositories as commu-
nicative and coordination venues: what features and prac-
tices support good stigmergic coordination?

Cataldo et al, in [3, 4] frame the question of inquiry into
socio-technical congruence as one between a set of actors
(social frame) and a set of artifact/technical objects (tech-
nical frame) and says that the two sets should fit in order
to perform best. Further the approach focuses on measur-
ing the social frame through a set of interaction measures
including co-location, co-presense on a sub-team and evi-
dence of direct discursive communication. In contrast the
work in this paper suggests that the social and the technical
are continuously interacting through an additional venue:
the code repository. The actors are leaving traces of their
actions in the code and they are reading and reflecting on
the code written by others in order to take coordinated ac-
tion. In such situations the code influences the actors’ be-
haviors and actors’ behaviors simultaneously influence the
shape of new code. This understanding, however, is diffi-
cult to analyze through the congruence measures suggested
by Cataldo et al. since the social and technical frames can-
not be separated for matrix style analysis. To the extent that
these practices are shared with commercial environments
the socio-technical congruence approach may be improved
by considering how to account for such non-discursive co-
ordination.

The second implication focuses on the communicative
aspects of the code repository and its role in stigmergic co-
ordination. In this way attention is directed to affordances
of the repository and the features identified as desirable by
Kellog et al, in [16, p. 39], are highlighted.

For example a good trading zone ought to be widely
available and readily understandable, both as a final product
(readable code) and, more novelly, as a dynamic product.
Dynamic understandability explains why norms like atomic
commits, where logically linked changes are bundled to-
gether but separated from logically distinct changes, have
emerged as best practice. Indeed entire tool development
efforts, such as SVN and git have focused on supporting
such practices. Even accessible, clear code and comments
are sometimes insufficient programatic descriptions of pro-
grammer intent and the coordinative capacity of repositories
can be further extended, as through test suites, continuous
integration and, possibly, programming by contract.

This understanding of code repositories also speaks to

the notion of modularity as coordination through informa-
tion hiding (e.g. [19, 2]). If one of the functions of the repos-
itory is dynamic understanding for dynamic collaboration
as requirements change, then enforcing strict information
hiding through access controls in the source code repository
seems likely to be counter-productive, removing the ability
of programmers to track the evolution of each other’s work
and mutually adjust to it. Information overload is reduced
if the repository, and its history, are available for inspection
when the programmer wants, as opposed to only through
discursive communication which are more costly and which
lose their context over time.

6.2. Future work

The work in this paper is illustrative, rather than confir-
matory. It is desirable to continue the examination, mov-
ing forward to consider dependencies between solo tasks as
well as examining other periods of the projects. It would
also be desirable to extend this analysis to other FLOSS
projects and other distributed software production projects.
It is unclear whether the work can be usefully extended to
software development projects where co-location plays a
large role as this implies a great deal of communication that
is un-archived, and it would therefore be difficult to separate
the impact of co-location from stigmergic coordination.

Our evidence come from the absence of archival evi-
dence, and is therefore strongly threatened by the possibil-
ity of communication that is systematically excluded from
those archives. It would be good, therefore, to support the
work with “positive” evidence of stigmergic coordination.
Perhaps it is possible to find evidence that developers go di-
rectly to the code in order to understand what they ought
to do and how they can coordinate it with the work of oth-
ers. This could be pursued through interviews and possibly
think-aloud studies of programmers at work. It might also
be possible to work with software developers to instrument
their computers to assess how and when they read other’s
code and the changes in the code repository.

Finally, the features of repositories and their dynamic
role in understanding and coordinating could be explored
directly through design science experiments, building on
the ideas presented for trading zones and boundary objects,
and clarifying implications for design. This future work
could contribute in enlarging the application of the bound-
ary object and trading zone concepts not only in settings
where different communities interact but also in situations
in which the interactions take place among actors of the
same community.



References

[1] K. Alho and R. Sulonen. Supporting virtual software
projects on the web. In Paper presented at the Workshop on
Coordinating Distributed Software Development Projects,
7th International Workshop on Enabling Technologies: In-
frastructure for Collaborative Enterprises (WETICE ‘98),
1998.

[2] C. Y. Baldwin and K. Clark. Design Rules: The Power of
Modularity. Harvard Business School Press, Cambridge,
MA, 2001.

[3] M. Cataldo, J. D. Herbsleb, and K. M. Carley. Socio-
technical congruence: A framework for assessing the im-
pact of technical and work dependencies on software devel-
opment productivity. 2009.

[4] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Car-
ley. Identification of coordination requirements: Implica-
tions for the design of collaboration and awareness tools. In
Proceedings of Computer Support Collaborative Work 2006
(CSCW 2006), Banff, Alberta, Canada, November 2006.

[5] M. E. Conway. How do committees invent? Datamation,
149(4329):28–31, 1968.

[6] K. Crowston, J. Howison, U. Y. Eseryel, and C. Masango.
The role of face-to-face meetings in technology-supported
self-organizing distributed teams. IEEE Transactions on
Professional Communications, 50(3):185–203, 2007.

[7] M. Elliott. Stigmergic collaboration: The evolution of group
work. M/C Journal, 9(2), 2007.

[8] S. Eppinger, D. Whitney, R. Smith, and D. Gebala. A model-
based method for organizing tasks in product development.
Research in Engineering Design, 6(1):1–13, 1994.

[9] Y. Gao, M. V. Antwerp, S. Christley, and G. Madey. A
research collaboratory for open source software research.
In the Proceedings of the 29th International Conference on
Software Enginering + Workshops (ICSE-ICSE Workshops
2007). Minneapolis, MN, 2007.

[10] P. P. Grassé. La reconstrution du nid et les coordinations
inter-individuelles chez bellicositermes natalensis et cubiter-
mes sp. la théorie de la stigmergie: Essai d’interprétation du
comportament de termites constructeurs. Insectes Sociaux,
(6):41–81, 1959.

[11] Greg Madey (ed). The sourceforge research data archive
(SRDA), 2007+. http://zerlot.cse.nd.edu/.

[12] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grin-
ter. An empirical study of global software development:
Distance and speed. In the International Conference on
Software Engineering (ICSE 2001), pages 81–90, Toronto,
Canada, 2001.

[13] F. Heylighen. Why is open acess development so successful?
stigmergic organization and the economics of information.
In B. Lutterbeck, M. Baerwolff, and R. A. Gehring, editors,
Open Source Jahrbuch 2007. Lehmanns Media, 2007.

[14] J. Howison. Alone Together: A socio-technical theory
of motivation, coordination and collaboration technologies
in organizing for free and open source software develop-
ment. PhD thesis, Syracuse University, School of Informa-
tion Studies, 2009. http://james.howison.name/.

[15] J. Howison, M. Conklin, and K. Crowston. FLOSSmole: A
collaborative repository for FLOSS research data and anal-
ysis. International Journal of Information Technology and
Web Engineering, 1(3):17–26, 2006.

[16] K. Kellogg, W. Orlikowski, and J. Yates. Life in the trading
zone: Structuring coordination across boundaries in postbu-
reaucratic organizations. Organization Science, 17(1):22–
44, 2006.

[17] R. N. Langlois. Modularity in technology and organization.
Journal of Economic Behavior & Organization, 49(1):19–
37, 2002.

[18] A. MacCormack, J. Rusnak, and C. Y. Baldwin. Explor-
ing the structure of complex software designs: An empirical
study of open source and proprietary code. Management
Science, 52(7):1015–1030, 2006.

[19] D. L. Parnas, P. C. Clements, and D. M. Weiss. The mod-
ular structure of complex systems. IEEE Transactions on
Software Engineering, 11(3):259–266, 1981.

[20] A. Ricci, A. Omicini, M. Viroli, L. Gardelli, and E. Oliva.
Cognitive stigmergy: Towards a framework based on agents
and artifacts. In D. Weyns, H. Parunak, and F. Michel, ed-
itors, E4MAS 2006, number 4389 in LNAI, pages 124–140.
2007.

[21] G. Robles, J. J. Merelo, and J. M. González-Barahona. Self-
organized development in libre software: a model based on
the stigmergy concept. In Proc. 6th International Workshop
on Software Process Simulation and Modeling, 2005.

[22] K. Schmidt and C. Simone. Coordination mechanisms: To-
wards a conceptual foundation of CSCW systems design.
Computer Supported Cooperative Work. The Journal of Col-
laborative Computing, 5(2-3):155–200, 1996.

[23] Software Engineering Institute, CMU. Capability maturity
model (software). Industry Standard, 1994.

[24] S. L. Star. The structure of ill-structured solutions: Bound-
ary objects and heterogeneous distributed problem solving.
In M. Huhn and L. Gasser, editors, Readings in Distributed
Artificial Intelligence. Morgan Kaufman, Menlo Park, USA,
1989.

[25] S. L. Star and J. R. Griesemer. Institutional ecology, ‘trans-
lations’ and boundary objects: Amateurs and professionals
in berkeley’s museum of vertebrate zoology, 1907-39. So-
cial Studies of Science, 19(3):397–420, August 1989.

[26] T. Susi and T. Ziemke. Social cognition, artefacts, and stig-
mergy: A comparative analysis of theoretical fraemworks
for the understanding of artefact-mediated collaborative ac-
tivity. Journal of Cognitive Systems Research, 2:273–290,
2001.

[27] P. Wagstrom. Vertical Communication in Open Software En-
gineering Communities. PhD thesis, Carnegie Mellon Uni-
versity, 2009.

[28] E. Wenger. Communities of Practice. Learning, Meaning,
and Identity. Cambridge University Press, NY, 1998.


