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Evaluating MIDST, A System to Support Stigmergic Team
Coordination
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Data science teams working on a shared analysis face coordination problems such as dividing up the work to
be done, monitoring performance and integrating the pieces. Research on distributed software development
teams has raised the potential of stigmergic coordination, that is, coordination through a shared work product
in place of explicit communication. The MIDST system [7] was developed to support stigmergic coordination
by making individual contributions to a shared work product visible, legible and combinable. In this paper, we
present initial studies of a total of 40 student teams (24 using MIDST) that shows that teams that used MIDST
did experience the intended system affordances to support their work, did seem to coordinate at least in part
stigmergically and performed better on an assigned project.
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1 INTRODUCTION
This paper presents initial experiences using the MIDST (Modular Interactive Data Science Tool)
system [7], a web-based application intended to support coordination for data-science teams. Data-
science projects have goals such as identifying correlations and causal relationships, classifying
and predicting events, identifying patterns and anomalies or inferring probabilities, interest and
sentiment [8]. A common data-science programming language is R [1]; analyses are performed by
writing programs in the R language that take data as input and output analysis results.

While a small data-science project can be carried out by a single person, large analyses need
the effort of a team. Task coordination is a key challenge for team members [11], e.g., dividing the
project into manageable pieces (e.g., data cleaning, model fitting, visualization), assigning pieces
to team members, tracking progress, dealing with interdependencies and integrating the pieces
to a final project. For instance, model fitting needs to be run on a cleaned data set, so a team
member writing code for model fitting needs to know what the cleaned data set looks like (e.g.,
what variables are available) and to retrieve the new data set when changes are made. A further
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complication is that data analyses are often iterative, that is, the results of one analysis may suggest
additional analyses or changes to prior steps. For instance, fitting a model may identify outliers in
the data or needed transformations that should be part of the data cleaning. The goal of the MIDST
system is to support a team of data scientists collaborating on developing a data analysis script.

This paper reports on an initial study of theMIDST that integrates multiple sources of quantitative
and qualitative evidence and analysis approaches. The findings of our initial studies across 40
student project teams (24 using MIDST) are three-fold. First, there is evidence that the system
does support the planned affordances (described below). Second, the system does seem to enable
members of the teams using it to coordinate their work. And finally, the teams using the system
achieved better results on their project than those who didn’t. We present in turn the intended
features of MIDST, our study methodology and findings before concluding with some reflections
on our initial studies and suggestions for future studies.

2 PRIORWORK
The current paper builds on the development of the MIDST system [7]. The novelty of the MIDST
system is that it is intended to support stigmergic coordination, that is, coordination based on signals
from the shared work in addition to or rather than through explicit communication. Stigmergy
was formulated initially to explain the behaviour of social insects (e.g., ants or wasps) that achieve
coordinated results (e.g., deploying workers to a food source or building a nest) without explicit
communication [12]. Instead of talking to each other, the insects follow simple behavioural rules to
react to changes in the environment made by other insects (e.g., ants exploiting a food source by
following the scent trail left by another ant). More recently, stigmergy has been invoked to explain
human behaviours: the formation of trails in a field as people follow paths initially laid down by
others (similar to ant trails), or markets, as buyers and sellers interact through price signals [22].

In CSCW specifically, Christensen [3–5] discussed how architects and builders coordinate their
tasks through “the material field of work”, such as drawings, building on earlier work in CSCW
focusing on coordination through work such as changes in shared databases [27]. Stigmergy has
been suggested in particular as an interpretation of how free/libre open source software (FLOSS)
developers coordinate [2], what Kalliamvakou et al. called a “code-centric collaboration” perspective
[14]. FLOSS developers interact in part through the code that they are developing, managed with
source code control systems that provide status about the state of the code and development.
Stigmergic coordination is valuable for software developers as it enables good coordination of the
the development process while reducing the need for explicit communication, which can be costly,
especially in a distributed environment. The design of MIDST drew specifically on the experiences
of FLOSS developers. However, stigmergy has been argued as a mechanism in online work more
generally. For instance, Elliot [10] argued that “[c]ollaboration in large groups is dependent on
stigmergy,” with the specific example of authoring on Wikis.

The MIDST system was designed to support stigmergic coordination of the work of data-science
teams by providing three system affordance, namely visibility, legibility and combinability of
individual contributions made to the shared work product. To introduce the system, we discuss
these in turn. Ref [7] presents the rationale for the design of MIDST and its similarities and
differences to other systems in more detail.

2.1 Visibility
A first requirement for stigmergic coordination is that the work and the status of the work done
by team members must be made visible to other team members. Visibility is closely related to the
concepts of awareness and of system transparency and translucency (see [7] for a discussion of these
concepts and their relationship to stigmergy). MIDST supports visibility of work in several ways.
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Fig. 1. Network view in MIDST

First, MIDST organizes work into projects; the creator of a project can invite others to view and
contribute to it. The breakdown of work within the project is presented in a shared network view,
shown in Figure 1. This view represents the data analysis as a workflow, the nodes representing
individual units of analysis. The flow of data through the system (and thus the dependencies of code
modules) is visualized via the node connections in the network view. The system shares changes to
the workflow with all users who have the project open as they are made, e.g., a new node added to
the workflow appears in real time for other users.

Second, the system also shares code, thus making users’ work mobile and visible to others. When
a node is opened, it reveals a Jupyter Notebook1 [17] containing the R code for the node, as shown
in Figure 2. Data from the connections is made available in a variable to the R code in the node.
A user can execute the entire network, a single node (assuming the prior nodes have been run to
create the input data) or a single cell in the Jupyter Notebook (e.g., for debugging).

To avoid sharing unfinished and perhaps unusable code, the contents of a node are updated only
on demand. A user who has made changes can push the new code to other team members when it
is ready, for them to test or to use. Other users are notified that new code is available, but can defer
pulling it, e.g., until they are ready to integrate any changes.

Third, to support team project management, MIDST tracks and displays the owner and status of
each node. In the current version, only the node’s owner can push code changes; others can only
view and run the node and make temporary changes (though any user can change the ownership
of a node). A node’s development status is one of proposed, not started, in progress, validating or
completed. Nodes are created in the proposed status without an owner. For instance, team members
might start work by brainstorming an initial plan for the project as a set of proposed nodes. As
part of the project planning, nodes can be assigned to a team member to work on and their status
changed to not started. When a node is opened for the first time, it is automatically moved to in
progress. If the node is unassigned, it is assigned to the user who first opens it. Nodes are manually

1The version of MIDST described in [6] used a plain text editor rather than Jupyter Notebooks for this view.
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Fig. 2. Notebook view in MIDST

moved to validating to signal that the code is ready to be checked by another team member or to
completed to signal that work is done. Figure 3 shows which statuses have an assigned user and
the expected status transitions (though a user can manually move a node to any status from any
status).

Fig. 3. Transitions of node status

Changes in these node attributes are visually shared as they happen in the network view (via
the colouring and other node decorations), in the notebook view (via messages from MIDST) and
in a task kanban view (Figure 4). The node status can be updated by dragging it in the kanban view
or from a menu on the notebook view. Nodes with execution errors are shown with a ‘!’ icon on a
node in the network view. These displays allow team members to get an update on the status of
their project at a glance.

2.2 Legibility
A second prerequisite for stigmergic coordination is that other users must be able to recognize
the purpose of a contribution to the shared work to know what it means and how to work with
it, that is, the contribution must be legible. It has been noted that as an analysis grows it often
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becomes difficult to navigate and understand [23], which is an impediment for efficient and effective
development and maintenance. For example, prior research has revealed that many data-science
analyses are difficult to understand, and that even the original analyst can struggle to understand
their prior effort [15, 23].

In Ref [7], legibility was described by saying that the work had to be of a known genre, meaning
that it exhibited socially-recognized regularities of form that provide useful signals of the purpose
of a contribution [21]. For instance, in scholarly publishing there are different kinds of documents,
each with a clear form and associated purpose, e.g., an article vs. an article review. By recognizing
the form, an informed reader knows what they can do with the document. Ref [7] argued that source
code could also be considered as having a genre, e.g., code for the user interface, data manipulation,
etc. and that being able to recognize from its form what the code did made it easier to work with.
Similarly, while describing the challenge of creating maintainable R applications, Malviya et al.
[19] state that a well-defined workflow (i.e., where to put / get data and how to produce, collect
and report the results) can help improve maintainability.
There are two ways in which MIDST improves legibility of data-science task contributions.

First, MIDST supports the notion that each node has a status, which Ref [7] argued is one form of
genre, in that a “not started” node requires different work than one that is in progress or ready
for validation. Second, there is an implicit set of genres of code nodes in the workflow defined in
the network view. Data flows from reading data to cleaning data to exploratory analysis to more
advanced machine learning to visualizations to outputs. Where the node is within the network
provides context as to the type of work likely being done within that node. Collectively, these
genres helps the team member understand the context and goal of the node, independent of the
actual details within the node. Ref [7] noted that MIDST’s support for genres was incomplete in
that code nodes are just notebooks that can potentially do anything, but the expectation is they are
more useful to other team members if they do one recognizable thing, an organization of work that
is encouraged by the workflow.

2.3 Combinability
The final prerequisite for stigmergic coordination is combinability of work, meaning that one
person’s contribution can easily to incorporated with others into a working whole. Ref [13] speaks
similarly of FLOSS growing through a process of superposition as contributions layer on top of
each other. However, the designers of MIDST observed that that the lack of modularity of R scripts

Fig. 4. Kanban view in MIDST
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make them difficult to combine. Further, other research has shown that modularity is not a familiar
concept for data scientists (unlike software developers) and that teams struggle to achieve effective
task modularity [25].

MIDST supports combinability by encouraging users to create modular components. Specifically,
MIDST supports modularity via the network view, in which nodes of R code have clearly defined
input and output ports to connect to other nodes. These input and output ports act as an interface
definition, clarifying the work to be accomplished by the node. With respect to merging work,
MIDST supports an easy way to push and pull code. When appropriate, MIDST reminds a user
to push the code they’ve developed to the central repository and then reminds the other team
members to pull. Initial results from another study of MIDST [25] suggest that use of MIDST does
improve the modularity of an analysis.

2.4 Problem statement
The main contribution of the prior work described above was to develop a theory for the affordances
hypothesized to support stigmergic coordination (visibility, legibility and combinability) and to
translate these affordances to system design. In this paper, we seek to examine system usage
empirically.

A particular interest is whether teams can make effective use of the developed functionality. Ref
[7] noted that the affordances for stigmergic coordination are socio-technical, meaning that social
practices are necessary to make the technical features effective. For instance, genres are social
rather than natural; learning to recognize them is part of learning a group practice. (Consider the
problem of students not recognizing the difference between a research article and a blog post, which
to experienced researchers are entirely distinct genres.) Similarly, learning to write modular code
takes practice. FLOSS developers have a set of such practices that support being able to coordinate
via the code, such as a “atomic commits” (i.e., a contribution should fix one bug rather than many
so it can be easily evaluated) and “not breaking the build” (i.e., a contribution should not leave the
code base in an unusable state that would block the work of other users). For MIDST to be effective,
team members need a similar set of practices around working with shared code.

The specific questions addressed in this paper are:

(1) Do teams use the system to collaborate?
(2) Do teams using the MIDST system develop work practices that use the system features, that

is, do they use it to a) obtain visibility of other team members’ work, b) create legible work
contributions and c) combine their individual work contributions?

(3) Are teams using MIDST able to coordinate their work stigmergically?
(4) Do teams using MIDST produce better analyses than teams that don’t?

3 METHOD
In this section, we describe the methods adopted to answer our research questions: the overall
study design, the subjects, the data collected and the analyses.

3.1 Study design
Our study addresses several research questions, requiring different research approaches. Initially,
we set out to test MIDST using a controlled experiment in which some teams usedMIDST and others
used RStudio, an integrated development environment for R. However, we found two limitations to
this study design. First, we were not able to obtain data about collaboration from the RStudio teams.
The teams coordinated face-to-face or by email, ways that were not visible to us as researchers. As a
result, many of the analyses presented below use only data from the MIDST sections. Furthermore,
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we discovered that not all of the teams in the MIDST condition actually used the system as intended,
compromising the evaluation but also raising the question of why they didn’t. Therefore, while we
present some comparison of RStudio and MIDST teams, we also compare MIDST teams that did or
did not use the collaboration features.

To answer question 1, we analyze the workflows created by the teams to identify teams that made
more or less use of the system. To answer question 2a (visibility), we examine MIDST feature usage
data that shows that team members did (sometimes) share code and examine or run each others’
nodes. To answer question 2b (legibility), we examine the nodes that teams created and informally
cluster them. To answer question 2c (combinability), we examine the networks created to show how
some do combine contributions from multiple team members. Question 3 (stigmergic coordination)
is partly answered by data showing that team members monitor each others’ performance via
MIDST. We also use data from a survey of MIDST users about perceived benefits of the tool. As
well, we compare the activities of the initial meetings of teams using MIDST and R Studio. Finally,
to answer Question 4 (performance), we present an analysis of the quality of projects created using
MIDST and RStudio.

3.2 Subjects
The participants in the study were data-science graduate students in an introductory masters-level
data science class. While there has been little written about using students to gain insight into
industry teams within the data-science context, experiments with students have been common
for decades in the software development domain. In fact, students were used as subjects in 87% of
the software development experiments analyzed over a representative ten-year period [28]. It is
important to note that when using students as subjects, several factors are typically considered.
First, “students vs. professionals” is actually a misrepresentation of the confounding effect of
proficiency, and in fact differences in performance are much more important than differences in
status [29]. Hence, master-level students, many of whom have several years of industry experience,
can often be an appropriate choice for subjects and act as a proxy for junior-level professionals.
Second, comparing across experimental conditions, using students may reduce variability because
all students have about the same level of education, leading to better statistical characteristics [18].
Finally, while students might not be as experienced as practicing professionals, they can be viewed
as the next generation of professionals and hence suitable subjects for studies [16, 24].

Data in this paper comes from students in 5 sections of a face-to-face introductory masters-level
data-science course in the final semester of 2019 and in 4 sections of a distance version of the
same course in the first quarter of 2020. We expected that the face-to-face teams would have less
need for coordination support, since they could easily meet and discuss their projects. However,
it was easier to observe these students and to support their use of MIDST, which was still under
development at the time. We expected the tool to be more useful for the distance students, who
have fewer opportunities to meet, but to be more difficult to support. Most students were in a
masters program in data science with some others in business administration.

In the face-to-face class, we had 18 teams in 3 sections that used MIDST and 9 teams in 2 sections
that used RStudio. The breakdown of teams by condition is shown in Table 1. Sections were assigned
to MIDST or RStudio by the authors and students chose sections, so assignment of students to
sections and to treatment is not random. The design is thus a quasi-experiment rather than a true
experiment and there could be undetected systematic differences among sections. However, we
did not know which students were in the sections when we assigned them to treatment and the
students did not know the treatment condition at the time they made their selection, so we believe
the bias is minimal.
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Sections used a common syllabus and assignments but were taught by different faculty members;
the MIDST sections were taught by two of the authors of this paper. Project teams were formed
by the instructor and included 4 or 5 students. Students in the MIDST sections were given a short
tutorial demonstration of MIDST to introduce the system and technical support when there were
problems. In two of the sections they worked on an individual assignment and in all sections on a
team project that had to be submitted for grading in MIDST. (Earlier assignments were done in
RStudio.)

In the distance class, we had 6 teams in 2 sections that used MIDST and 7 in 2 sections that used
RStudio. Teams were 2 to 4 students. As with the face-to-face class, one of the authors provided
an introduction to MIDST. In these sections, we were able to observe an initial 20–30 minute
video-conference meeting of 8 of the teams (3 MIDST and 5 RStudio) after they were assigned the
project and a second meeting a week later for the RStudio teams only. However, teams were not
required to use MIDST and in the end only one or two did. Sections were taught by different faculty
members, but not by the authors.

Class setting Condition Number of sections Number of teams

Face-to-face MIDST 3 18
RStudio 2 9

Distance MIDST 2 6 (3 observed)
RStudio 2 7 (5 observed)

Table 1. Number of teams studied by condition.

The project in both classes was deliberately open-ended: students were given a large dataset of
responses to hotel customer surveys and asked to derive some interesting insights about drivers of
customer satisfaction. The data needed to be cleaned and processed to create features for the data
mining. Teams were expected to use a variety of data-mining techniques and to create a number of
visualizations to illustrate their findings, which were presented in class and in a final report.

The study protocol was reviewed and approved by our University Institutional Review Board.
Students in the face-to-face class were required to use MIDST as part of the class experience, but
were not required to take part in the study. Their agreement was not visible to the instructor of their
section. While there were certainly some challenges for students using MIDST, they also benefited
from exposure to new approaches to data-science project management, as will be demonstrated
through our findings.

3.3 Data
The study was multi-method, drawing on varied sources of data. Figure 5 summarizes which data
were obtained from which subjects and used for which analysis. Each type of data is described
below; the research questions are discussed in section 4.

3.3.1 Workflow data. We collected the workflows and R notebooks created by the teams who used
MIDST in the face-to-face sections and the R code of those in the RStudio sections. We analyzed
those by counting the number of nodes created, the network characteristics, the length and types
of nodes and completeness of the analyses performed.

3.3.2 Usage log data. The MIDST system logs user interaction with MIDST. We analyzed the logs
for the face-to-face classes. The log data used for the analysis were collected over the last two
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Fig. 5. Connecting subjects, types of data collected and uses.

months of the semester, ending just after the final projects were due. The log actions recorded are
listed below with brief descriptions:

• view network: view the project workflow diagram.
• view node: open a node, to view its contents or to work on coding in the notebook. (Unfortu-
nately, we were not able to log interactions with the Jupyter notebook server.)

• started node run: a node/notebook is run by a project member.
• started network run: the entire network/project is run.
• pushed nodes: push changes in notebook to share with team members.
• pulled nodes: pull the node to retrieve the most recent version of the code.

The system also logged manual changes to the development status of the node as shown in
Figure 3. We analyzed updates to the status of nodes across each project to understand usage of
Kanban in MIDST as well as their difference among different network structures.

3.3.3 Observational data. We observed 3 MIDST and 5 RStudio teams in the distance class working
together for the first time on the project midway through the class. We further observed the
RStudio teams the following week. The meetings were recorded (with the permission of the
students) for analysis and lasted 20 minutes for the RStudio teams and 28 minutes for the MIDST
teams. Unfortunately, because section instructors were able to allocate only limited in-class time to
teamwork we were able to observe the teams only once or twice. Given the limited amount of data,
in this paper we present only an initial analysis.

For analysis, the meeting was divided into two-minute slices that were coded for (i) the type of
coordination and work being performed, (ii) the type of data-science task being performed and (iii)
for other interactions. A 2-minute slice could have more than one code if there was more than one
kind of activity. We chose to code in 2-minute increments to simplify the coding task for the coders
while still capturing data granular enough to be of interest. The specific codes are:

(i)Type of coordination or individual work:
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• Status update: when a team member updates the others on their progress and status of the
task assigned.

• Plan future work: discussion of planned future work for the project.
• Code / interfaces: discussion about the R code or the interface between two pieces of code.
• Individual work: working individually.
• Integrate code: discussion on combining pieces of codes of the project.

(ii) Type of data science task:

• Understand problem: discussion of problem formulation and brainstorming about steps to
solution.

• Data preparation: cleaning, filling missing values, excluding columns and/or rows of data,
handling outliers or other data preparation work.

• Modelling: discussion of machine learning or data-mining approaches to be used.
• Evaluation or visualization: visualizing the data and/or outcomes of data processing.
• Deploying code: sharing the code with team members.

(iii) Other activities:

• Socialization: time spent on social discussion.
• Discussion of tools: time spent discussing issues or problems with the tool, in particular,
difficulties using MIDST.

The video observations were coded by graduate students who had previously taken the course
and had worked with MIDST. The coders went through a brief training on the coding system that
included discussions of how to recognize each type of work, coding a short example discussion,
review of the code and discussion of disagreements or uncertainties and review of the process
of recording the codes. Each meeting was coded by three coders. Coders could make free-form
comments to describe the activity occurring in a time slot in addition to using the preset codes
listed above.
For every 2-minute slice, we merged together the codes from the three coders, tracking how

often each code was applied to the slice. We kept only codes that were applied two or more times
(i.e. at least two coders agreed that the particular type of activity occurred in that time slot). Codes
applied only by a single coder were dropped. The coders applied a total of 441 codes (counting after
merging) across 284 minutes (142 2-minute slots) in the 13 recorded meetings. Of these, 267 had no
match, leaving 174 code for analysis (after merging the repeated codes). The MIDST meetings had
a total of 71 codes applied, the 1st week RStudio meetings 59 and the 2nd week RStudio meetings
44. These 174 codes were applied by two or more coders, so they represent more than half of the
codes applied, but it is apparent that the level of agreement among the coders is only middling. The
coding could be made more reliable, e.g., with more intensive training of the coders. However, as
we have only limited data (e.g., only a few groups for one or two meetings) and this analysis plays
a small part in this paper, it did not seem worthwhile to pursue improvement at this point in the
project. We focus instead on the aspects of the meetings for which there is sufficient agreement.

3.3.4 Survey data. We surveyed the students about their experiences using the tools and coordi-
nating with their team members on the project. We used the same survey as in Ref [7]. The survey
asked a series of quantitative and qualitative questions about the impression of the utility of the
tool, the team process and coordination and satisfaction with results. We received 118 responses
from the face-to-face class (41 from students in MIDST sections and 77 from RStudio sections) but
only 13 from the distance class (6 for MIDST and 7 for RStudio).
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Condition MIDST RStudio

IT Experience
Prior degree IT-related? Yes No Yes No

None 5 13 13 14
Less than 2 years 8 5 18 10
More than 2 years 8 2 16 6

Table 2. Experience of subjects: information technology (IT) related degree and work experi-
ence, by condition.

4 FINDINGS
In this section we present findings from the data analysis to answer the research questions posed
above.We first present data from the survey responses about information technology (IT) experience
and education of the subjects in the face-to-face sections. As shown in Table 2, students had a range
of levels of IT education and work experience. The students in the MIDST condition seem to have
somewhat less background, however a 𝜒2 test did not reveal a significant difference between the
two conditions (𝜒2 (5) = 3.075, 𝑝 = 0.69).

4.1 Question 1: Do teams use MIDST for teamwork?
Our first question is whether the teams actually used MIDST’s features to support their teamwork.
This analysis examines only MIDST users in the face-to-face sections. Establishing which teams
did and did not use MIDST is important for this paper for two reasons. First, if some teams did
not use the tool as intended, then including their data will paint a misleading picture of the tool’s
performance. Second, determining usage makes it possible to compare users and non-users.
To assess whether teams actually used MIDST, we first examined the workflows they created.

For this analysis we focus on the 18 face-to-face teams in the MIDST condition. The median project
included 12 nodes (ranging from 4 to 21); the median node contained 7 Jupyter notebook cells and
29 lines of code (with a wide range, from 1 to 116 cells and 1 to 1217 lines of code). We present the
workflows as a directed graph as shown in 6. The color of the node in these figures represents the
owner of the node (unlike in the actual system, where colour represents the development status).
The size of the node is proportional to the number of times an action was logged for that node,
which suggests the quantity of effort or interaction spent in MIDST.

Students in the face-to-face section were required to submit the code for their projects in MIDST.
However, a few teams apparently did the project mostly or entirely outside of MIDST (e.g., in
RStudio) and simply copied their individual R code files into MIDST to submit, as shown in Figures
6 and 7. Note in particular the small size of the nodes, indicating few activities logged in MIDST.
As most of the teams were composed of 4 students, we considered that workflows with fewer
than 8 nodes (i.e., at least one team member with just one node) only used MIDST to submit their
assignment. Three of the 18 projects fell into this category.
Even when networks had multiple nodes per student, in three cases the networks were discon-

nected, evidence that the team’s work was done separately rather than integrated. The network
diagrams of two of those projects are shown in Figure 8 and Figure 9.

To quantify the structural properties of the remaining workflows, we computed the betweenness
centrality for each node. Computation of the betweenness centrality of a node starts by identifying
the shortest path between all pairs of nodes; the betweenness centrality of a node is the fraction
of such paths on which it sits. For this computation, we considered the workflows as undirected
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Fig. 6. A workflow represented as a
directed graph; colour codes indicate
the node owner and size represents
the number of activities logged on the
node.

Fig. 7. A MIDST workflow where the
four disconnected nodes with little ac-
tivity suggest that the work was done
individually and outside of MIDST.

Fig. 8. A workflow with disconnected
graphs, suggesting a lack of integration
of work

Fig. 9. A workflow where the number,
small size (i.e., number of edits) and
lack of connection of nodes suggests
that most team members worked indi-
vidually and outside of MIDST

graphs. A node with high betweenness is a hot-spot in the analysis as it is part of the processing of
data from or to many other nodes.
The distribution of betweenness scores was quite skewed, with most nodes have betweenness

of 0 and only one or two having a high score. We divided the remaining projects by the number
of nodes with betweenness greater than 0.4, chosen as it divided the high-score nodes from the
majority. Table 3 shows the statistics for each project: the total number of nodes, the number of
nodes with betweenness greater than 0.4 and basic statistics for the betweenness scores.
Four projects had only 1 node with betweenness > 0.4. The diagram of two such projects are

shown in Figure 10 and Figure 11. Examining these workflows, we see some evidence of division of
labour among the team members: specifically, it seems that one team member took care of data
cleaning and preparation of a dataset on which a series of analyses were run. However, in these
cases the analyses were mostly run separately.
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Table 3. Betweenness Statistics

Project Category # nodes > 0.4 Nodes Count mean std min 50% max

Fewer than 8 nodes 0 5 0.000 0.000 0.000 0.000 0.000
0 4 0.000 0.000 0.000 0.000 0.000
2 6 0.333 0.273 0.000 0.400 0.600

Disconnected 0 8 0.006 0.017 0.000 0.000 0.048
0 15 0.010 0.027 0.000 0.000 0.099
0 14 0.031 0.094 0.000 0.000 0.346

One central 1 8 0.155 0.337 0.000 0.000 0.952
1 10 0.139 0.298 0.000 0.000 0.944
1 13 0.135 0.251 0.000 0.000 0.924
1 9 0.151 0.284 0.000 0.018 0.875

Two or more central 2 9 0.151 0.318 0.000 0.000 0.893
2 15 0.140 0.244 0.000 0.000 0.758
2 21 0.088 0.207 0.000 0.000 0.747
2 12 0.139 0.248 0.000 0.000 0.709
2 12 0.171 0.264 0.000 0.000 0.764
2 12 0.129 0.278 0.000 0.000 0.891
2 19 0.101 0.225 0.000 0.000 0.837
3 17 0.152 0.223 0.000 0.125 0.775

Fig. 10. A workflowwith only one node
with high betweenness

Fig. 11. A workflowwith only one node
with high betweenness

Finally, the remaining 9 projects had 2 or more nodes with a betweenness centrality > 0.4. The
diagram of two example projects are shown in Figure 12 and Figure 13. These projects show a
high level of interconnected work. Furthermore, the size of some of the nodes (i.e., the number of
operations) suggests that development of at least some of the code was done in MIDST.

Different sections had different distributions of the teams with more-or-less complex workflows,
with more of the more complex ones found in the sections that had used MIDST for an individual
assignment before the project. However, the relationship between section and complexity was not
statistically significant (𝜒2 (6) = 10.8, 𝑝 = 0.1).
Further evidence of the different levels of usage of MIDST comes from logs of the use of the

kanban features that allow team members to report and track the development status of nodes.
The results shown in Table 4 shows that the kanban was used differently across the teams in the
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Fig. 12. A workflow with two or more
nodes with high betweenness

Fig. 13. A workflow with two or more
nodes with high betweenness

MIDST. Figure 14 shows the number of times a node was moved to a particular status per project.
If this project management feature were used as intended, each node would have moved through
all five statuses, i.e. a node is created in the proposed state, moved to not started when accepted
and assigned, moved to in progress when it is worked on, then validating and completed.
However, both Figure 14 and Table 4 show that project teams didn’t always use the intervening
stages but often simply moved nodes to the completed state, i.e., marking completion instead of
real-time tracking of the status of each nodes in the project. Further, the counts suggest that the
projects with the least developed workflows also used the project management features least.

Fig. 14. Usage of node kanban stage by complexity of workflow

In summary, it seems that about two-thirds of the teams who were assigned to use MIDST
actually used its features to support team coordination. In further analyses, we will compare teams
with workflows in the four levels of complexity, which for ease of reference we will label from A to
D as shown in Table 4.

4.2 Question 2: Usage of affordances
Our next question was whether the users of the MIDST system show evidence of being able to use
the intended affordances. This analysis uses only data from the face-to-face teams that used the
MIDST system. We consider first legibility and then visibility and combinability.

4.2.1 Legibility of work. For work contributions to be useful as a basis for coordinating work,
team members must be able to recognize the purpose of a contribution and thus what they can
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Table 4. Kanban Statistics

Modules Count
Project Categories Kanban States Used by projects mean std min 50% max

A. Fewer than 8 nodes
(Total of 3 projects) 1. proposed 1 of 3 1.00 NA 1.0 1.0 1.0

2. not started 1 of 3 1.00 NA 1.0 1.0 1.0
3. in progress 2 of 3 1.50 0.71 1.0 1.5 2.0
4. validating 1 of 3 1.00 NA 1.0 1.0 1.0
5. completed 1 of 3 2.00 NA 2.0 2.0 2.0

B. Disconnected
(Total of 3 projects) 1. proposed 3 of 3 2.33 1.15 1.0 3.0 3.0

2. not started 2 of 3 3.00 2.83 1.0 3.0 5.0
3. in progress 2 of 3 4.50 0.71 4.0 4.5 5.0
4. validating 2 of 3 1.00 0.00 1.0 1.0 1.0
5. completed 3 of 3 7.33 3.06 4.0 8.0 10.0

C. One central node
(Total of 4 projects) 1. proposed 1 of 4 2.00 NA 2.0 2.0 2.0

2. not started 2 of 4 2.00 1.41 1.0 2.0 3.0
3. in progress 2 of 4 2.50 0.71 2.0 2.5 3.0
4. validating 3 of 4 3.67 2.31 1.0 5.0 5.0
5. completed 3 of 4 8.67 3.79 6.0 7.0 13.0

D. Two or more central nodes
(Total of 8 projects) 1. proposed 3 of 8 3.00 1.00 2.0 3.0 4.0

2. not started 4 of 8 4.50 4.51 1.0 3.0 11.0
3. in progress 7 of 8 3.71 2.43 1.0 4.0 7.0
4. validating 6 of 8 3.83 2.86 1.0 3.5 7.0
5. completed 8 of 8 9.75 6.82 1.0 10.5 21.0

or should do with that contribution. In the case of MIDST, the contributions are the nodes with
code added to the workflow. The authors assessed whether MIDST users made their contributions
legible to others by examining the workflows and the code in the nodes to assess whether other
team members would be able to easily comprehend what the node did.

We found that the work in the less developed workflows is not very understandable, e.g., a node
called “Analysis 1” could do anything (Figure 8). Further, the small number of nodes means that
each node does many things, further hindering comprehension. In contrast, in the more complex
workflows, we found a common structure in which data are loaded and cleaned in one node and
then a set of analyses are run more or less independently in separate nodes. The data cleaning node
has high betweenness, while the rest of the nodes are low or even 0. Figure 12 is unusual in that it
has four cleaning nodes, preceded by splitting the dataset and followed by merging it. Talking to
the students, we learned that this team resisted division of labour: they felt it was important than all
team members experience all phases of the project, data cleaning included, hence the multiple data
cleaning nodes. But even in this case, the function of the nodes seems to fall into regular patterns.

4.2.2 Visibility and combinability of code. The next two affordances provided by MIDST to support
stigmergic coordination are visibility and combinability. Before a node can be recognized it must
be visible to other team members; once it is recognized, it must be possible to combine the work.
To explore the visibility and combinability of the work contributions, we examined the logs of the
usage of different system features comparing teams with different complexity of workflows (groups
A–D in Table 4). We considered running a single node, viewing the workflow and viewing a node as
individual actions. Boxplots of the counts of these activities per project team are shown in Figure 15.
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We note that the counts of these activities are higher in the teams with more complex workflows,
reflecting that the members of those teams did more of their work in MIDST. An ANOVA shows that
counts of viewing the network and viewing a node are significantly different across the four groups
defined in Table 4 (𝐹 (3, 14) = 6.3, 𝑝 = 0.006 for viewing the network and 𝐹 (3, 14) = 4.1, 𝑝 = 0.03
for viewing a node) but not for running a single node.2 The lack of significance may be due to the
small number of teams, leading to low statistical power.

Fig. 15. Frequency of individual tasks performed in MIDST

We consider pulling and pushing code and running the entire workflow (i.e., including the code
of other team members) as indications of collaborative development, specifically actions to make
work visible to others and to combine work that other team members. Again, as shown in Figure
16, which shows boxplots of the count of activities per project, these activities are more common
for teams with more complex workflows (though the pattern is less clear than for the individual
tasks in Figure 15). As noted earlier, the more complex workflows are also more interconnected,
evidence that team members were building on each others’ work. However, an ANOVA shows that
the differences in these counts among the groups are not statistically significant.

Fig. 16. Frequency of collaborative tasks performed in MIDST

Finally, there is evidence that team members made use of the visibility of code, specifically by
viewing or running a node that is assigned to another teammember, as shown by the boxplots of the
count of activities in Figures 17 and 18. However, only the counts of viewing someone else’s node is
statistically significantly different across the conditions (𝐹 (3, 14) = 4.4, 𝑝 = 0.02). Collectively, the
frequency of these actions suggest that those who used MIDST did experience its affordances for
visibility (looking at others’ code) and combinability (running others’ code and using the outputs).
2The counts for all eight actions are statistically significantly different when comparing teams in groups A and B combined
to the teams in groups C and D combined.
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Fig. 17. figure
Viewing nodes assigned to other team members

Fig. 18. Running nodes assigned to
other team members

4.3 Question 3: Do teams coordinate stigmergically?
The evidence of the previous section suggests that members of that teams that used MIDST did use
the system features to view each others’ code and to track progress on the project. The third question
we wish to explore is whether teams using MIDST are actually able to coordinate stigmergically,
that is, via the shared work.

Evidence for this question comes primarily from the survey. We report only on the face-to-face
teams for which we had a large number of responses and where we are confident that at least some
teams used the system as intended. A problem we encountered in the analysis of the surveys is that
they were anonymous, meaning that we did not know which team a respondent was in, only which
condition, MIDST or RStudio. And as noted above, only about 2/3 of the MIDST teams seem to
have actually used the tool to support their teamwork. As a result, comparison of the quantitative
data was inconclusive. We focus instead on a qualitative analysis of open-ended questions about
how the students coordinated their teamwork and how they found the status of tasks that other
team members were working on. These questions were analyzed by one of the authors by looking
for mentions of specific coordination technologies or approaches in the free-text answers.

For the RStudio teams, the most common answer for how the team coordinated (mentioned by
about 1/3 of respondents who provided an answer) was face-to-face meetings, typically once or
twice a week. Some mentioned the strategy of dividing work into independent pieces to reduce the
need to coordinate. For finding task status, meetings or Trello were about as common (students
were advised to use Trello in the course). Students also mentioned using Whatsapp or another chat
program to stay in touch. Two students specifically noted problems sharing code, e.g., “Sharing
code was tough and clunky” and “Rstudio didn’t let us share the code, so we had to download
the code shared by the team members and then integrate it into our own code and run it”. Some
mentioned using Google Docs or Github to share code or work status, along with occasional
mentions of a number of other tools (e.g., Blackboard or Teams). About 1/2 of the respondents
noted communications problems in their team. A common theme here was the difficulty of finding
a time to meet given peoples’ busy schedules.
In contrast, only five respondents in the MIDST condition mentioned meetings or use of any

other coordination technology as a way to coordinate. Most reported using MIDST as the way to
find task status. And reports of communications problems were rare, though complaints about
slacking team members were equally common in the two conditions. In summary, the qualitative
data from the survey suggests that the MIDST teams faced less difficulty coordinating their work
and needed less communication support to do, which is consistent with being able to use stigmergic
coordination.

Supporting evidence for stigmergic coordination comes from the observation of team meetings
in the distance class and the analysis of how the teams spent their time together. Figure 19 shows
the frequency of different kinds of work for the teams using MIDST vs. those using RStudio in the
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first meeting and Figure 20 for just the RStudio teams in the second meeting (recall that we were
able to observe the MIDST sections for only 1 meeting vs. 2 meetings for the RStudio sections). The
codes are defined in section 3. The MIDST and RStudio distributions are statistically significantly
different (𝜒2 (10) = 56.2, 𝑝 < 0.001). Comparing the two distributions, it seems that the MIDST
teams spend less time than the RStudio teams on coordination activities towards the right of the
figure (e.g., status update or planning future work) and more time on data-science work towards
the left of the figure (e.g., coding and interfaces, data preparation, modelling), consistent with a
shift from explicit to stigmergic coordination. The distributions of activities in the two RStudio
meetings are not statistically significantly different (𝜒2 (9) = 11.8, 𝑝 = 0.2), suggesting that the
coding has captured something real about how these teams meet.

4.4 Question 4: Do teams using MIDST do better projects?
The final question is if using MIDST enables teams to do better work. We have already provided
evidence of one advantage, namely better integration of the project outputs. The teams who really
used MIDST are not just putting together slides reporting separate efforts. To further evaluate the
analysis done within MIDST, we counted:

• The number of nodes in the workflow
• The number of machine-learning algorithms used (e.g., Support Vector Machine, Decision
Trees). There was an expectation for the project that teams would use a minimum of 3
algorithms.

• The number of visualizations created (to represent the number of attributes evaluated via
exploratory analysis). There was an expectation of a minimum of 15 visualizations.

• The number of map visualizations created. There was an expectation of minimum of 1
mapping visualizations.

Fig. 19. Frequency of codes applied to time for MIDST and R-Studio teams in first project week

Fig. 20. Frequency of codes applied to time for R-Studio teams in second project week
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In analyzing the project completeness, we again divided the teams into four groups based on the
complexity of their workflows as shown in Table 4. We also compared against the final projects
of the teams using RStudio. Note that the number of nodes (or files for RStudio) and number of
analyses are independent, because a single node can contain multiple models and visualizations.
Table 5 shows the fraction of the project teams that met the expected standard. Table 6 gives the
count of the number of each analysis and the number of nodes in the workflow. The projects with
more complex workflows did more in terms of the count of analyses performed. The differences
between the number of analyses done by the teams in groups A and B vs. the groups C and D
were statistically significant (using a Welch Two Sample t-test in R, 𝑡 (9.2) = −4.2, 𝑝 = 0.002,
𝑡 (14.9) = −5.0, 𝑝 < 0.001 and 𝑡 (11.1) = −2.3, 𝑝 = 0.04 for the number of models, visualizations and
map visualizations respectively).

Table 5. Fraction of projects meeting expected standard by complexity of workflow

# of
Projects % of projects above expectations

3 Models 15 Viz 1 Map Viz
RStudio 9 33% 44% 11%
Fewer than 8 nodes 4 0% 0% 0%
Disconnected networks 2 0% 0% 0%
1 node with betweenness > 0.4 4 75% 50% 50%
2+ nodes with betweenness > 0.4 8 75% 100% 75%

Table 6. Average (and standard deviation) of count of analyses performed per project by
complexity of workflows

# of
Projects

# of nodes
or files Models Viz Map Viz

RStudio 9 3.8 (2.7) 3.4 (1.0) 15.1 (5.3) 0.7 (0.7)
Fewer than 8 nodes 4 4.5 (1.3) 2.3 (0.5) 10.3 (2.1) 0.0 (0.0)
Disconnected network 2 14.5 (0.7) 3.0 (0.0) 6.0 (5.7) 0.5 (0.7)
1 node with betweenness > 0.4 4 10.0 (1.9) 3.8 (0.4) 22.3 (12.5) 3.8 (3.7)
2+ nodeswith betweenness > 0.4 8 15.7 (3.8) 4.6 (0.7) 35.6 (9.8) 9.7 (11.9)

The RStudio teams fall in the middle of the range. The RStudio teams were not statistically
significantly different from projects in either groups A and B combined or groups C and D combined
formodels andmap visualizations butwere different from both for visualizations (𝑡 (10.3) = −2.5, 𝑝 =

0.03 comparing RStudio projects to the projects in groups A and B and 𝑡 (16.2) = 3.4, 𝑝 = 0.003 to
groups C and D).

5 DISCUSSION
In this section, we discuss the findings presented above, discussing in turn the evidence that use of
MIDST changes team coordination, the impact on the modularity of the code, the (to us) surprising
finding that some teams made minimal use of the system and plans for future research.
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5.1 Impacts of MIDST on team coordination
Our goal in testing the MIDST system was to determine if its use enabled teams to use stigmergic
coordination, that is, coordination through a shared work product. The evidence marshalled above
suggests that it does. The results presented above suggest that MIDST does help teams to work
together in a different way. As shown in Figure 19, teams seem to spend their initial time together
differently. Strikingly, MIDST teams seem to spend less time on coordination, e.g., doing status
updates, developing mutual understanding of the problem or discussing future work. Rather, they
seem to be able to more immediately work on the task at hand, working on data preparation,
coding, different kinds of analyses and integrating results. Even though the data come from the
first team meeting, it seems that having a shared work environment allows the team members to
actually start working together. Demonstrating the impact of this shared environment is the main
contribution of this paper to the literature on supporting team coordination.

In contrast, the members of the RStudio teams will be working individually on their parts of the
project in RStudio; there is no shared space for the team. During a face-to-face discussion, one team
member could share their copy of RStudio with the others, but only one person could be entering
code and at the end of the sessions, the others would not necessarily have advanced on their parts
of the project. By the second meeting of the RStudio teams, they are spending some time on the
task, but they still seem to have a greater need for explicit coordination. In short, while the RStudio
teams spent their time talking about work, the MIDST teams were able to start doing it.
As the project progresses, the evidence from section 4.2 is that the system does seem to enable

teams that use it to see each others’ status and code, which the qualitative survey results suggest
enable them to coordinate their teamwork more easily. As well, MIDST makes it easier to develop
modular code that is easier to understand and to integrate. Overall, it appears that teams using
MIDST accomplish a more thorough analysis.

Of course, these results are indicative rather than corroborative. The middling level of agreement
on the coding of the meetings is a concern (though the stability of coding from one week to the
next for the RStudio teams suggest it has captured something real about the way the teams work).
The lack of a control group for the within-MIDST analysis precludes conclusions about causality.
For instance, the apparent relation between the use of MIDST features and the complexity of
the workflow and the thoroughness of the analysis could be spurious. While there’s no reason
in principle why a team could not do a thorough analysis in RStudio (even if they submit it via
MIDST), it could be that teams trying to manage the time they spend on the course do both a less
thorough job on the project and avoid dealing with an experimental tool. Still, our conclusions
are based on multiple sources of data and types of analysis. No single result is conclusive but the
combination of multiple forms of evidence pointing in the same direction may be more persuasive.

5.2 Impacts of MIDST on task modularity
The data also are suggestive about how the system has an impact. The hypothesis that drove MIDST
system development (drawn from studies of software developers) was that making shared work
visible, legible and combinable would enable it to support coordination. Legibility and combinability
in particular seemed problematic, as data scientists were observed to face difficulties creating
understandable and maintainable data analysis code. The MIDST developers attributed those
difficulties in part to the lack of modularity of the analysis scripts. Data science differs from
software development in this regard, since software developers are trained to create modular code
and their tools (and we argue, assume) support such development.
The second contribution of this paper to the literature on supporting team coordination is

showing the value of making shared work more legible and combinable, in this setting, by making
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it more modular. To encourages users to develop modular code, MIDST represents an analysis
script as a workflow, in which a node represents a module of work, connected to other modules by
a flow of data. Our findings suggest that some teams were able to create nodes with identifiable
purposes and could build on each others work, i.e., that the support for modularity did facilitate
legibility and combinability. Creating loosely-coupled work is also beneficial because it reduces the
demand for coordination [20]. Indeed, an interesting feature of the work flows we examined was a
common structure of a central node for data cleaning and feature development followed by many
more-or-less independent analyses of the data. Such a structure means that different team members
can explore alternative approaches in parallel, without needing much explicit coordination, while
using the system to make their results visible to other team members. However, whether this lack
of interdependence among work products is characteristic of data science in general or just of
student projects is not clear.

5.3 Reasons for non-use of MIDST
The result that six of teams in the MIDST condition made minimal use of MIDST was somewhat
unexpected. To hypothesize reasons for this disuse we note that intention to use a technology can
be predicted by the technology’s perceived usefulness and perceived ease of use [9].
Starting with ease of use, it has to be admitted that during the semester we were attempting

to evaluate the system with the face-to-face sections, it was still being worked on and did have
occasional bugs. (Indeed, the primary reason for working with a face-to-face class was to be better
able to support students when they had problems.) A number of the comments on the survey
allude to these problems. Further, as a research prototype, its functionality is not at the level of a
commercial project such as RStudio, which all the students experienced first. The system was more
stable for the distance students, but there was also much less opportunity to introduce the system
and to support users, also impacting ease of use.
While ease of use might be an explanation by itself, it also seems that a number of teams did

not perceive the tool as useful, which we found surprising given the difficulty of sharing code
experienced by the RStudio teams and the ease of doing so in MIDST. One explanation is that
MIDST is based on the notion of a shared work product. However, not all teams attempted to create
an integrated product, being content instead to run separate analyses that were integrated only by
being presented together.
Another explanation may lie in the socio-technical nature of the affordances need to support

stigmergic coordination. As noted above, the technical features of MIDST need to be supported by
team practices. It could be that the teams are not used to working together and so did not have the
work practices needed to make MIDST effective. For instance, students may not be in the habit of
sharing code they write with others or of tracking others’ progress on distributed work, making
that the visibility provided by MIDST less useful.
It is also worth noting that the students in the sections that used MIDST for an individual

assignment before doing the project tended to have more complex workflows for the project.
Though the relationship is not statistically significant, it does suggest that it simply takes a bit of
time and practice to learn how to work in a new way. A takeaway here is that teams need training
in how to work as a team as well as in the particular features of MIDST. The growing literature on
team processes for data science [26] suggests that these problems are not unique to students, but
working with students offers an opportunity to address them. The data science course that was the
site for our study does include some training, e.g., on the importance of modularity and on Kanban
as a project management approach; this material could be extended and tied to features of MIDST
that they support.
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5.4 Future research
We have several plans for future work using the MIDST system. First, the systemwould be enhanced
by adding features that are common in software development systems, such as issue tracking or
versioning of the code. Data analysis is often iterative, where the findings of one analysis might
have implication for another. However, those implications are at a different level than the flow of
data that is currently captured in the workflow. It would be helpful to provide a mechanism to
capture and share these insights as they are developed.

We also want to develop a set of standard data science nodes that can be deployed and customized,
e.g., nodes for typical analyses such as regression, machine learning or visualization. Using such
nodes would improve the legibility of a workflow, since users who know the standard nodes could
quickly assess what each step of the workflow does. As well, nodes could encapsulate “best practice”,
e.g., a regression node could include expected diagnostic checks, thus improving code quality and
completeness.

Our immediate next step is to further evaluate the use and benefits of MIDST with a larger sample
that enables more thorough statistical analysis of differences and a more rigorously-implemented
study design that supports causal conclusions. To do so, we seek to make the systemmore acceptable
to users. The developers of MIDST have already made advances in ease of use, e.g., by incorporating
Jupyter notebook as the coding interface. We also need to address the perceived usefulness of the
system by making it clearer what problem the system solves. If the system is tested with students,
the project requirements might be tweaked to reward more integrated solutions. Our experience
with the difficulties students faced working together suggests teamwork practices that might be
encouraged. As well, we need to refine and further develop the analytic framework and coding
schemes for the study, e.g., to develop more rigorous coding for the legibility of a workflow.

There are a number of questions to explore in future research regarding the effects of stigmergic
coordination on the social dynamics of collaboration. For example, it would be interesting to
understand if reduced explicit coordination affects team emergent states such as trust, commitment
or engagement. Are team members comfortable with this mode of interaction, or would they
prefer more explicit interactions? We also need to understand under what circumstance stigmergic
coordination is sufficient to coordinate and when explicit coordination is needed, and how teams
transition between these modes. Data gathering about these dynamics and about the interaction of
team members more generally can be included in the planned study, but some questions might
require studies of use over a longer time.

In future work, we want to use the system as the basis for building additional support for data-
science teams. A particular interest is the possibility of adding non-human members to a team. An
automated system could assess data quality, e.g., spotting outliers or problems with missing data,
suggest transformations to correct skew or more ambitiously, notice bias in the data. It could create
additional data columns, e.g., breaking up complex data into components. A system could suggest
additional actions for an analysis, e.g., useful visualizations or modelling approaches given what it
knows about the data or diagnostics for a user-selected analysis. If the assumptions of a test are
violated, it could suggest an alternative, e.g., a non-parametric test instead of a parametric one.

Having the system work in the same work space as the users would support stigmergic coor-
dination between the human user and automated system. Interventions in the process could be
made by creating a note on notebook cell with suggested changes or creating additional cells or
entire nodes, e.g., the cells to run and interpret diagnostics for an analysis or a node to create a
visualization. The system could communicate intent or certainty by adding comments to the code.
If the system intervenes by providing code to run, the user could edit the code if not appropriate.
To make cells function smoothly together (i.e., combinability) does require some additional work,
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e.g., identifying which variables hold the necessary data. For a user to be able to use suggestions
made by an automated system, they need to be able to recognize what those contributions do and
how to use them. Such legibility could be explicitly supported, e.g., by commenting in the code.
More generally, stigmergy seems like an interesting alternative for coordination between humans
and machines.

6 CONCLUSION
The apparently beneficial impact of MIDST for the data-science teams that used it raises the question
of where else a stigmergic approach might be useful. The principles of visibility, legibility and
combinability are ones that can be transferred from domain to domain. But given that stigmergic
coordination is embedded in the particular work, supporting it generically seems difficult. Another
kind of generalization is about the kind of team. We have focused in our study on coordination in
small teams with shared goals. However, stigmergic coordination might also be useful in crowd
settings, e.g., help members of a crowd working on some challenge to see what parts of the problem
space have been explored and what strategies have proved useful. Future research could look for
ways to generalize across different kinds of work products to support broader classes of tasks and
teams.
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