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Abstract 

We propose a semi-automatic approach for 

content analysis that leverages machine learn-

ing (ML) being initially trained on a small set 

of hand-coded data to perform a first pass in 

coding, and then have human annotators cor-

rect machine annotations in order to produce 

more examples to retrain the existing model 

incrementally for better performance. In this 

“active learning” approach, it is equally im-

portant to optimize the creation of the initial 

ML model given less training data so that the 

model is able to capture most if not all posi-

tive examples, and filter out as many negative 

examples as possible for human annotators to 

correct. This paper reports our attempt to op-

timize the initial ML model through feature 

exploration in a complex content analysis 

project that uses a multidimensional coding 

scheme, and contains codes with sparse posi-

tive examples. While different codes respond 

optimally to different combinations of fea-

tures, we show that it is possible to create an 

optimal initial ML model using only a single 

combination of features for codes with at 

least 100 positive examples in the gold stand-

ard corpus. 

1 Introduction 

Content analysis, a technique for finding evi-

dence of concepts of theoretical interest through 

text, is an increasingly popular technique social 

scientists use in their research investigations. In 

the process commonly known as “coding”, social 

scientists often have to painstakingly comb 

through large quantities of natural language cor-

pora to annotate text segments (e.g., phrase, sen-

tence, and paragraphs) with codes exhibiting the 

concepts of interest (Miles & Huberman, 1994). 

Analyzing textual data is very labor-intensive, 

time-consuming, and is often limited to the capa-

bilities of individual researchers (W. Evans, 

1996). The coding process becomes even more 

demanding as the complexity of the project in-

creases especially in the case of attempting to 

apply a multidimensional coding scheme with a 

significant number of codes (Dönmez, Rosé, 

Stegmann, Weinberger, & Fischer, 2005). 

With the proliferation and availability of dig-

ital texts, it is challenging, if not impossible, for 

human coders to manually analyze torrents of 

text to help advance social scientists’ understand-

ing of the practices of different populations of 

interest through textual data. Therefore, compu-

tational methods offer significant benefits to help 

augment human capabilities to explore massive 

amounts of text in more complex ways for theory 

generation and theory testing. Content analysis 

can be framed as a text classification problem, 

where each text segment is labeled based on a 

predetermined set of categories or codes.  

Full automation of content analysis is still far 

from being perfect (Grimmer & Stewart, 2013). 

The accuracy of current automatic approaches on 

the best performing codes in social science re-

search ranges from 60-90% (Broadwell et al., 

2013; Crowston, Allen, & Heckman, 2012; M. 

Evans, McIntosh, Lin, & Cates, 2007; Ishita, 

Oard, Fleischmann, Cheng, & Templeton, 2010; 

Zhu, Kraut, Wang, & Kittur, 2011). While the 

potential of automatic content analysis is promis-

ing, computational methods should not be 

viewed as a replacement for the role of the pri-

mary researcher in the careful interpretation of 

text. Rather, the computers’ pattern recognition 

capabilities can be leveraged to seek out the most 

likely examples for each code of interest, thus 

reducing the amount of texts researchers have to 

read and process.  

We propose a semi-automatic method that 

promotes a close human-computer partnership 

for content analysis. Machine learning (ML) is 

used to perform the first pass of coding on the 

unlabeled texts. Human annotators then have to 

correct only what the ML model identifies as 

positive examples of each code. The initial ML 



 

 

model needs to learn only from a small set of 

hand-coded examples (i.e., gold standard data), 

and will evolve and improve as machine annota-

tions that are verified by human annotators are 

used to incrementally retrain the model. In con-

trast to conventional machine learning, this “ac-

tive learning” approach will significantly reduce 

the amount of training data needed upfront from 

the human annotators. However, it is still equally 

important to optimize the creation of the initial 

ML model given less training data so that the 

model is able to capture most if not all positive 

examples, and filter out as many negative exam-

ples as possible for human annotators to correct.  

To effectively implement the active learning 

approach for coding qualitative data, we have to 

first understand the nature and complexity of 

content analysis projects in social science re-

search. Our pilot case study, an investigation of 

leadership behaviors exhibited in emails from a 

FLOSS development project (Misiolek, Crow-

ston, & Seymour, 2012), reveals that it is com-

mon for researchers to use a multidimensional 

coding scheme consisting of a significant number 

of codes in their research inquiry. Previous work 

has shown that not all dimensions in a multidi-

mensional coding scheme could be applied fully 

automatically with acceptable level of accuracy 

(Dönmez et al., 2005) but little is known if it is 

possible at all to train an optimal model for all 

codes using the same combination of features. 

Also, the distribution of codes is often times un-

even with some rarely occurring codes having 

only few positive examples in the gold standard 

corpus.  

This paper presents our attempt in optimiz-

ing the initial ML model through feature explora-

tion using gold standard data created from a mul-

tidimensional coding scheme, including codes 

that suffer from sparseness of positive examples. 

Specifically, our study is guided by two research 

questions: 

a) How can features for an initial machine 

learning model be optimized for all codes in 

a text classification problem based on multi-

dimensional coding schemes? Is it possible 

to train a one-size-fits-all model for all codes 

using a single combination of features?  

b) Are certain features better suited for codes 

with sparse positive examples? 

2 Machine Learning Experiments 

To optimize the initial machine learning model, 

we systematically ran multiple experiments using 

a gold standard corpus of emails from a 

free/libre/open-source software (FLOSS) devel-

opment project coded for leadership behaviors 

(Misiolek et al., 2012). The coding scheme con-

tained six dimensions: 1) social/relationship, 2) 

task process, 3) task substance, 4) dual process 

and substance, 5) change behaviors, and 6) net-

working. The number of codes for each dimen-

sion ranged from 1 to 14. There were a total of 

35 codes in the coding scheme. Each sentence 

could be assigned more than one code. Framing 

the problem as a multi-label classification task, 

we trained a binary classification model for each 

code using support vector machine (SVM) with 

ten-fold cross-validation. This gold standard cor-

pus consisted of 3,728 hand-coded sentences 

from 408 email messages.  

For the active learning setup, we tune the ini-

tial ML model for high recall since having the 

annotators pick out positive examples that have 

been incorrectly classified by the model is pref-

erable to missing machine-annotated positive 

examples to be presented to human annotators 

for verification (Liew, McCracken, & Crowston, 

2014). Therefore, the initial ML model with low 

precision is acceptable. 

 

Category Features 

Content Unigram, bigram, pruning, 

tagging, lowercase, stop-

words, stemming, part-of-

speech (POS) tags 

Syntactic Token count 

Orthographic Capitalization of first letter of 

a word, capitalization of entire 

word 

Word list Subjectivity words 

Semantic Role of sender (software de-

veloper or not) 

 

Table 1. Features for ML model. 

 

As shown in Table 1, we have selected gen-

eral candidate features that have proven to work 

well across various text classification tasks, as 

well as one semantic feature specific to the con-

text of FLOSS development projects. For content 

features, techniques that we have incorporated to 

reduce the feature space include pruning, substi-

tuting certain tokens with more generic tags, 

converting all tokens to lowercase, excluding 

stopwords, and stemming. Using the wrapper 

approach (Kohavi & John, 1997), the same clas-

sifier is used to test the prediction performance 

of various feature combinations listed in Table 1. 



 

 

Model SINGLE MULTIPLE 

Measure Mean Recall Mean Precision Mean Recall Mean Precision 

Overall 

All (35) 0.690 0.065 0.877 0.068 

Dimension 

Change (1) 0.917 0.011 1.000 0.016 

Dual Process and 

Substance (13) 

0.675 0.069 0.852 0.067 

Networking (1) 0.546 0.010 0.843 0.020 

Process (3) 0.445 0.006 0.944 0.024 

Relationship (14) 0.742 0.083 0.872 0.089 

Substance (3) 0.735 0.061 0.919 0.051 

 

Table 2. Comparison of mean recall and mean precision between SINGLE and MULTIPLE models.  

 

 
 

Figure 1. Recall and precision for each code (grouped by dimension). 

 

3 Results and Discussion 

We ran 343 experiments with different combina-

tions of the 13 features in Table 1. We first com-

pare the performance of the best one-size-fits-all 

initial machine learning model that produces the 

highest recall using a single combination of fea-

tures for all codes (SINGLE) with an “ensemble” 

model that uses different combinations of fea-

tures to produce the highest recall for each code 

(MULTIPLE). The SINGLE model combines 

content (unigram + bigram + POS tags + lower-

case + stopwords) with syntactic, orthographic, 

and semantic features. None of the best feature 

combination for each code in the MULTIPLE 

model coincides with the feature combination in 

the SINGLE model. For example, the best fea-

ture combination for code “Phatics/Salutations” 

consists of only 2 out of the 13 features (unigram 

+ bigram). 

The best feature combination for each code 

in the MULTIPLE model varies with only some 

regularity noted in a few codes within the Dual 

and Substance dimensions. However, these pat-

terns are not consistent across all codes in a sin-

gle dimension indicating that the pertinent lin-

guistic features for codes belonging to the same 

dimension may differ despite their conceptual 

similarities, and even fitting an optimal model 

for all codes within a single dimension may 

prove to be difficult especially when the distribu-

tion of codes is uneven, and positive examples 

for certain codes are sparse. There are also no 

consistent feature patterns observed from the 

codes with sparse positive examples in the 

MULTIPLE model. 
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Figure 2. Recall and precision for each code (sorted by gold frequency) 
 

The comparison between the two models in 

Table 2 further demonstrates that the MULTI-

PLE model outperforms the SINGLE model both 

in the overall mean recall of all 35 codes, as well 

as the mean recall for each dimension. Figure 1 

(codes grouped by dimensions) illustrates that 

the feature combination on the SINGLE model is 

ill-suited for the Process codes, and half the Dual 

Process and Substance codes. Recall for each 

code for the SINGLE model are mostly below or 

at par with the recall for each code in the MUL-

TIPLE model. Thus, creating a one-size-fits-all 

initial model may not be optimal when training 

data is limited. Figure 2 (codes sorted based on 

gold frequency as shown beside the code names 

in the x-axis) exhibits that the SINGLE model is 

able to achieve similar recall to the MULTIPLE 

model for codes with over 100 positive examples 

in the training data. Precision for these codes are 

also higher compared to codes with sparse posi-

tive examples. This finding is promising because 

it implies that creating a one-size-fits-all initial 

ML model may be possible even for a multidi-

mensional coding scheme if there are more than 

100 positive examples for each code.  

4 Conclusion and Future Work 

We conclude that creating an optimal initial one-

size-fits-all ML model for all codes in a multi-

dimensional coding scheme using only a single 

feature combination is not possible when codes 

with sparse positive examples are present, and 

training data is limited, which may be common 

in real world content analysis projects in social 

science research. However, our findings also 

show that the potential of using a one-size-fits-all 

model increases when the size of positive exam-

ples for each code in the gold standard corpus are 

above 100. For social scientists who may not 

possess the technical skills needed for feature 

selection to optimize the initial ML model, this 

discovery confirms that we can create a “canned” 

model using a single combination of features that 

would work well in text classification for a wide 

range of codes with the condition that research-

ers must be able to provide sufficient positive 

examples above a certain threshold to train the 

initial model. This would make the application of 

machine learning for qualitative content analysis 

more accessible to social scientists. 

The initial ML model with low precision 

means that the model is over-predicting. As a 

result, human annotators will have to correct 

more false positives in the machine annotations. 

For future work, we plan to experiment with dif-

ferent sampling strategies to pick the most “prof-

itable” machine annotations to be corrected by 

human annotators. We will also work on design-

ing an interactive and adaptive user interface to 

promote greater understanding of machine learn-

ing outputs for our target users. 
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